搜索
    上传资料 赚现金
    英语朗读宝

    模拟测评湖南省长沙市中考数学历年模拟汇总 卷(Ⅲ)(含答案解析)

    模拟测评湖南省长沙市中考数学历年模拟汇总 卷(Ⅲ)(含答案解析)第1页
    模拟测评湖南省长沙市中考数学历年模拟汇总 卷(Ⅲ)(含答案解析)第2页
    模拟测评湖南省长沙市中考数学历年模拟汇总 卷(Ⅲ)(含答案解析)第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    模拟测评湖南省长沙市中考数学历年模拟汇总 卷(Ⅲ)(含答案解析)

    展开

    这是一份模拟测评湖南省长沙市中考数学历年模拟汇总 卷(Ⅲ)(含答案解析),共28页。试卷主要包含了下列图像中表示是的函数的有几个,如图,某汽车离开某城市的距离y等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=45°,那么∠BAF的大小为( )
    A.15°B.10°C.20°D.25°
    2、如图,点,,若点P为x轴上一点,当最大时,点P的坐标为( )
    A.B.C.D.
    3、有理数a,b在数轴上对应的位置如图所示,则下列结论正确的是( ).
    A.B.C.D.
    4、下面的图形中,是轴对称图形但不是中心对称图形的是( )
    A.B.C.D.
    5、下列图像中表示是的函数的有几个( )
    A.1个B.2个C.3个D.4个
    6、如图,点F在BC上,BC=EF,AB=AE,∠B=∠E,则下列角中,和2∠C度数相等的角是( )
    A.B.C.D.
    7、如图,AD,BE,CF是△ABC的三条中线,则下列结论正确的是( )
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    A.B.C.D.
    8、某商场第1年销售计算机5000台,如果每年的销售量比上一年增加相同的百分率,第3年的销售量为台,则关于的函数解析式为( )
    A.B.
    C.D.
    9、如图,某汽车离开某城市的距离y(km)与行驶时间t(h)之间的关系如图所示,根据图形可知,该汽车行驶的速度为( )
    A.30km/hB.60km/hC.70km/hD.90km/h
    10、如图,有三块菜地△ACD、△ABD、△BDE分别种植三种蔬菜,点D为AE与BC的交点,AD平分∠BAC,AD=DE,AB=3AC,菜地△BDE的面积为96,则菜地△ACD的面积是( )
    A.24B.27C.32D.36
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙),则拼成的长方形的周长是_________.
    2、在下图中,是的直径,要使得直线是的切线,需要添加的一个条件是________.(写一个条件即可)
    3、如图,所有三角形都是直角三角形,所有四边形都是正方形,已知,,,,则_______.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    4、如图, 已知在 中, 是 边上一点, 将 沿 翻折, 点 恰好落在边 上的点 处,那么__________
    5、∠AOB的大小可由量角器测得(如图所示),则∠AOB的补角的大小为_____度.
    三、解答题(5小题,每小题10分,共计50分)
    1、甲、乙两人沿同一直道从A地去B地.已知A,B两地相距9000m,甲的步行速度为100m/min,他每走半个小时就休息15min,经过2小时到达目的地.乙的步行速度始终不变,他在途中不休息,在整个行程中,甲离A地的距离(单位:m)与时间x(单位:min)之间的函数关系如图所示(甲、乙同时出发,且同时到达目的地).
    (1)在图中画出乙离A地的距离(单位:m)与时间x之间的函数图象;
    (2)求甲、乙两人在途中相遇的时间.
    2、阅读理解题
    在求两位数乘两位数时,可以用“列竖式”的方法进行速算,例如:
    你能理解上述三题的解题思路吗?理解了,请完成:如图给出了部分速算过程,可得 , , , , , .
    3、如图,在中,,.
    (1)尺规作图:
    ①作边的垂直平分线交于点,交于点;
    ②连接,作的平分线交于点;(要求:保留作图痕迹,不写作法)
    (2)在(1)所作的图中;求的度数.
    解:∵垂直平分线段,
    ∴,(_________)(填推理依据)
    ∴,(__________)(填推理依据)
    ∵,∴,
    ∵,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴__________,
    ∴__________,
    ∵平分,
    ∴__________.
    4、如图,直线l:与y轴交于点G,直线l上有一动点P,过点P作y轴的平行线PE,过点G作x轴的平行线GE,它们相交于点E.将△PGE沿直线l翻折得到△PGE′,点E的对应点为E′.
    (1)如图1,请利用无刻度的直尺和圆规在图1中作出点E的对应点E′;
    (2)如图2,当点E的对应点E′落在x轴上时,求点P的坐标;
    (3)如图3,直线l上有A,B两点,坐标分别为(-2,-6),(4,6),当点P从点A运动到点B的过程中,点E′也随之运动,请直接写出点E′的运动路径长为____________.
    5、已知:在平面直角坐标系中,点O为坐标原点,和关于y轴对称,且,
    (1)如图1,求的度数;
    (2)如图2,点P为线段延长线上一点,交x轴于点D,设,点P的横坐标为d,求d与t之间的数量关系;
    (3)如图3,在(2)的条件下,点E为x轴上一点,连接交y轴于点F,且,,在的延长线上取一点Q,使,求点Q的横坐标.
    -参考答案-
    一、单选题
    1、A
    【分析】
    利用DE∥AF,得∠CDE=∠CFA=45°,结合∠CFA=∠B+∠BAF计算即可.
    【详解】
    ∵DE∥AF,
    ∴∠CDE=∠CFA=45°,
    ∵∠CFA=∠B+∠BAF,∠B=30°,
    ∴∠BAF=15°,
    故选A.
    【点睛】
    本题考查了平行线的性质,三角形外角的性质,三角板的意义,熟练掌握平行线的性质是解题的关键.
    2、A
    【分析】
    作点A关于x轴的对称点,连接并延长交x轴于P,根据三角形任意两边之差小于第三边可· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    知,此时的最大,利用待定系数法求出直线的函数表达式并求出与x轴的交点坐标即可.
    【详解】
    解:如图,作点A关于x轴的对称点,则PA=,
    ∴≤(当P、、B共线时取等号),
    连接并延长交x轴于P,此时的最大,且点的坐标为(1,-1),
    设直线的函数表达式为y=kx+b,
    将(1,-1)、B(2,-3)代入,得:
    ,解得:,
    ∴y=-2x+1,
    当y=0时,由0=-2x+1得:x=,
    ∴点P坐标为(,0),
    故选:A
    【点睛】本题考查坐标与图形变换=轴对称、三角形的三边关系、待定系数法求一次函数的解析式、一次函数与x轴的交点问题,熟练掌握用三角形三边关系解决最值问题是解答的关键.
    3、D
    【分析】
    先根据数轴可得,再根据有理数的减法法则、绝对值性质逐项判断即可得.
    【详解】
    解:由数轴的性质得:.
    A、,则此项错误;
    B、,则此项错误;
    C、,则此项错误;
    D、,则此项正确;
    故选:D.
    【点睛】
    本题考查了数轴、有理数的减法、绝对值,熟练掌握数轴的性质是解题关键.
    4、D
    【分析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A、是轴对称图形,是中心对称图形,故此选项不符合题意;
    B、不是轴对称图形,是中心对称图形,故此选项不符合题意;
    C、不是轴对称图形,是中心对称图形,故此选项不符合题意;
    D、是轴对称图形,不是中心对称图形,故此选项符合题意;
    故选:D.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【点睛】
    此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    5、A
    【分析】
    函数就是在一个变化过程中有两个变量x,y,当给定一个x的值时,y由唯一的值与之对应,则称y是x的函数,x是自变量,注意“y有唯一性”是判断函数的关键.
    【详解】
    解:根据函数的定义,每给定自变量x一个值都有唯一的函数值y与之相对应,
    故第2个图符合题意,其它均不符合,
    故选:A.
    【点睛】
    本题考查函数图象的识别,判断方法:做垂直x轴的直线在左右平移的过程中,与函数图象只会有一个交点.
    6、D
    【分析】
    根据SAS证明△AEF≌△ABC,由全等三角形的性质和等腰三角形的性质即可求解.
    【详解】
    解:在△AEF和△ABC中,

    ∴△AEF≌△ABC(SAS),
    ∴AF=AC,∠AFE=∠C,
    ∴∠C=∠AFC,
    ∴∠EFC=∠AFE+∠AFC=2∠C.
    故选:D.
    【点睛】
    本题主要考查了全等三角形的判定与性质,等腰三角形的判定和性质,熟练掌握全等三角形的判定与性质是解决问题的关键.
    7、B
    【分析】
    根据三角形的中线的定义判断即可.
    【详解】
    解:∵AD、BE、CF是△ABC的三条中线,
    ∴AE=EC=AC,AB=2BF=2AF,BC=2BD=2DC,
    故A、C、D都不一定正确;B正确.
    故选:B.
    【点睛】
    本题考查了三角形的中线的定义:三角形一边的中点与此边所对顶点的连线叫做三角形的中线.
    8、B
    【分析】
    根据增长率问题的计算公式解答.
    【详解】
    解:第2年的销售量为,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    第3年的销售量为,
    故选:B.
    【点睛】
    此题考查了增长率问题的计算公式,a是前量,b是后量,x是增长率,熟记公式中各字母的意义是解题的关键.
    9、B
    【分析】
    直接观察图象可得出结果.
    【详解】
    解:根据函数图象可知:t=1时,y=90;
    ∵汽车是从距离某城市30km开始行驶的,
    ∴该汽车行驶的速度为90-30=60km/h,
    故选:B.
    【点睛】
    本题主要考查了一次函数的图象,正确的识别图象是解题的关键.
    10、C
    【分析】
    利用三角形的中线平分三角形的面积求得S△ABD=S△BDE=96,利用角平分线的性质得到△ACD与△ABD的高相等,进一步求解即可.
    【详解】
    解:∵AD=DE,S△BDE=96,
    ∴S△ABD=S△BDE=96,
    过点D作DG⊥AC于点G,过点D作DF⊥AB于点F,
    ∵AD平分∠BAC,
    ∴DG=DF,
    ∴△ACD与△ABD的高相等,
    又∵AB=3AC,
    ∴S△ACD=S△ABD=.
    故选:C.
    【点睛】
    本题考查了角平分线的性质,三角形中线的性质,解题的关键是灵活运用所学知识解决问题.
    二、填空题
    1、4m+12##12+4m
    【解析】
    【分析】
    根据面积的和差,可得长方形的面积,根据长方形的面积公式,可得长方形的长,根据长方形的周长公式,可得答案.
    【详解】
    解:由面积的和差,得
    长方形的面积为(m+3)2-m2=(m+3+m)(m+3-m)=3(2m+3).
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    由长方形的宽为3,可得长方形的长是(2m+3),
    长方形的周长是2[(2m+3)+3]=4m+12.
    故答案为:4m+12.
    【点睛】
    本题考查了平方差公式的几何背景,整式的加减,利用了面积的和差.熟练掌握运算法则是解本题的关键.
    2、∠ABT=∠ATB=45°(答案不唯一)
    【解析】
    【分析】
    根据切线的判定条件,只需要得到∠BAT=90°即可求解,因此只需要添加条件:∠ABT=∠ATB=45°即可.
    【详解】
    解:添加条件:∠ABT=∠ATB=45°,
    ∵∠ABT=∠ATB=45°,
    ∴∠BAT=90°,
    又∵AB是圆O的直径,
    ∴AT是圆O的切线,
    故答案为:∠ABT=∠ATB=45°(答案不唯一).
    【点睛】
    本题主要考查了圆切线的判定,三角形内角和定理,熟知圆切线的判定条件是解题的关键.
    3、46
    【解析】
    【分析】
    利用勾股定理分别求出AB2,AC2,继而再用勾股定理解题.
    【详解】
    解:由图可知,AB2=
    故答案为:46.
    【点睛】
    本题考查正方形的性质、勾股定理等知识,是基础考点,掌握相关知识是解题关键.
    4、##
    【解析】
    【分析】
    翻折的性质可知,;在中有,;,得是等腰三角形,即可求出长度.
    【详解】
    解:翻折可知:,
    ∵,,
    ∴在中,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴,


    ∴是等腰三角形


    故答案为:.
    【点睛】
    本题考查了轴对称的性质,等腰三角形的判定与性质,三角形的外角,勾股定理等知识点.解题的关键在于找出边相等的关系.
    5、140
    【解析】
    【分析】
    先根据图形得出∠AOB=40°,再根据和为180度的两个角互为补角即可求解.
    【详解】
    解:由题意,可得∠AOB=40°,
    则∠AOB的补角的大小为:180°−∠AOB=140°.
    故答案为:140.
    【点睛】
    本题考查补角的定义:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.熟记定义是解题的关键.
    三、解答题
    1、
    (1)图象见解析;
    (2)甲、乙两人在途中相遇的时间为40分钟,60分钟和80分钟的时候.
    【分析】
    (1)根据乙的步行速度始终不变,且他在途中不休息,即直接连接原点和点(120,9000)即可;
    (2)根据图象可判断甲、乙两人在途中相遇3次,分段计算,利用待定系数法结合图象即可求出相遇的时间.
    (1)
    乙离A地的距离(单位:m)与时间x之间的函数图像,如图即是.
    (2)
    根据题意结合图象可知甲、乙两人在途中相遇3次.
    如图,第一次相遇在AB段,第二次相遇在BC段,第三次相遇在CD段,
    根据题意可设的解析式为:,
    ∴,
    解得:,
    ∴的解析式为.
    ∵甲的步行速度为100m/min,他每走半个小时就休息15min,
    ∴甲第一次休息时走了米,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    对于,当时,即,
    解得:.
    故第一次相遇的时间为40分钟的时候;
    设BC段的解析式为:,
    根据题意可知B(45,3000),D (75,6000).
    ∴,
    解得:,
    故BC段的解析式为:.
    相遇时即,故有,
    解得:.
    故第二次相遇的时间为60分钟的时候;
    对于,当时,即,
    解得:.
    故第三次相遇的时间为80分钟的时候;
    综上,甲、乙两人在途中相遇的时间为40分钟,60分钟和80分钟的时候.
    【点睛】
    本题考查一次函数的实际应用.理解题意,掌握利用待定系数法求函数解析式是解答本题的关键.
    2、能,4,8,2,8,7,4
    【分析】
    根据表格发现规律:“第二行的前两格是两个两位数的十位数字相乘得到的结果,积如果是一位数前面补0,第二行的后两格是两个两位数的个位数字相乘得到的结果,积如果是一位数前面补0,第三行的前三格是第一个两位数字的个位数字乘以第二个两位数的十位数字再加上第二个两位数的十位数字乘以第二个两位数的个位数字,第四行,同列的两个数相加,如果大于9,进一位.”即可得到答案.
    【详解】
    由题意得,
    第二行的前两格是两个两位数的十位数字相乘得到的结果,积如果是一位数前面补0;
    第二行的后两格是两个两位数的个位数字相乘得到的结果,积如果是一位数前面补0;
    第三行的前三格是第一个两位数字的个位数字乘以第二个两位数的十位数字再加上第二个两位数的十位数字乘以第二个两位数的个位数字,如第二个表格:;
    第四行,同列的两个数相加,如果大于9,进一位,
    ∵,



    ,,,,,,
    故答案为4,8,2,8,7,4.
    【点睛】
    本题属于与有理数乘法有关的规律探索题,根据表格发现规律是解决问题的关键.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    3、(1)①图见解析;②图见解析;(2)线段垂直平分线上的点到这条线段两个端点的距离相等,等边对等角,110,80,40.
    【分析】
    (1)①根据线段垂直平分线的尺规作图即可得;
    ②先连接,再根据角平分线的尺规作图即可得;
    (2)先根据线段垂直平分线的性质可得,再根据等腰三角形的性质可得,然后根据三角形的内角和定理可得,从而可得,最后根据角平分线的定义即可得.
    【详解】
    解:(1)①作边的垂直平分线交于点,交于点如图所示:
    ②连接,作的平分线交于点如图所示:
    (2)∵垂直平分线段,
    ∴,(线段垂直平分线上的点到这条线段两个端点的距离相等)
    ∴,(等边对等角)
    ∵,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵平分,
    ∴.
    【点睛】
    本题考查了线段垂直平分线和角平分线的尺规作图、线段垂直平分线的性质、等腰三角形的性质等知识点,熟练掌握尺规作图和线段垂直平分线的性质是解题关键.
    4、
    (1)见解析
    (2)
    (3)6
    【分析】
    (1)作出过点E的l的垂线即可解决;
    (2)设直线l交x轴于点D,则由直线解析式可求得点D、点G的坐标,从而可得OD的长.由对称性及平行可得,设点P的坐标为(a,2a-2),则可得点E的坐标,由及勾股定理可求得点的坐标;
    (3)分别过点A、B作y轴的平行线,与过点G的垂直于y轴的直线分别交于点C、M,则点E在线段CM上运动,根据对称性知,点运动路径的长度等于CM的长,故只要求得CM的长即可,由A、B两点的坐标即可求得CM的长.
    (1)
    所作出点E的对应点E′如下图所示:
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (2)
    设直线l交x轴于点D
    在y=2x-2中,令y=0,得x=1;令x=0,得y=-2
    则点D、点G的坐标分别为(1,0)、(0,-2)
    ∴OD=1,OG=2
    由对称性的性质得:,
    ∵GE∥x轴




    设点P的坐标为(a,2a-2),其中a>0,则可得点E的坐标为(a,-2)
    ∴EG=a


    在Rt△中,由勾股定理得:
    解得:
    当时,
    所以点P的坐标为
    (3)
    分别过点A、B作y轴的平行线,与过点G的垂直于y轴的直线分别交于点C、M,则点E在线段CM上运动,根据对称性知,点运动路径的长度等于CM的长
    ∵A,B两点的坐标分别为(-2,-6),(4,6)
    ∴CM=4-(-2)=6
    则点运动路径的长为6
    故答案为:6
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【点睛】
    本题主要考查了一次函数的图象与性质、折叠的性质、尺规作图等知识,一次函数的性质及折叠的性质的应用是本题的关键.
    5、
    (1)22.5°;
    (2)d=2t;
    (3)5
    【分析】
    (1)由轴对称,得到∠ABC=2,利用,得到∠A=3,根据∠A+=90°,求出的度数;
    (2)由轴对称关系求出AD=6t,根据,推出∠ADP=∠BAO,证得AP=DP,过点P作PH⊥AD于H,求出OH=AH-AO=2t,可得d与t之间的数量关系;
    (3)连接DQ,过P作PM⊥y轴于M,求出∠EAP=∠DPQ=,证明△EAP≌△QPD,推出∠PDQ=∠APE=,得到∠ODQ=90°,证明∠MPF=∠MFP=45°,结合,求出BF=,由,求出t=1,得到OA=1,OD=5,由此求出点Q的横坐标.
    (1)
    解:∵和关于y轴对称,
    ∴∠ABO=∠CBO,
    ∴∠ABC=2,
    ∵,
    ∴∠A=3,
    ∵∠A+=90°,
    ∴=22.5°;
    (2)
    解:∵和关于y轴对称,
    ∴∠BAO=∠BCO,
    ∵,
    ∴OD=5t,AD=6t,
    ∵,
    ∴∠ADP=∠BCO,
    ∴∠ADP=∠BAO,
    ∴AP=DP,
    过点P作PH⊥AD于H,则AH=DH=3t,
    ∴OH=AH-AO=2t,
    ∴d=2t;
    (3)
    解:∵=22.5°,∠ABC=2=45°,AB=BC,
    ∴∠BAC=∠ACB=∠ADP=,∠APD=45°,
    ∵,
    ∴∠APE=,∠AEP=45°,
    ∴∠EAP=∠DPQ=,
    ∵AP=DP,AE=PQ,
    ∴△EAP≌△QPD,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴∠PDQ=∠APE=,
    ∴∠ODQ=90°,
    连接DQ,过P作PM⊥y轴于M,
    ∵∠AEP=45°,
    ∴∠MPF=∠MFP=45°,
    ∴MF=MP,
    ∵,MP=2t,
    ∴,
    ∵∠APE=,∠PBF=∠ABO=,
    ∴∠PBF=∠APE,
    ∴BF=,
    ∵,
    ∴,
    得t=1,
    ∴OA=1,OD=5,
    ∴点Q的横坐标为5.
    【点睛】
    此题考查了三角形内角和定理的应用,轴对称的性质,等腰三角形的性质,平行线的性质,全等三角形的判定及性质,勾股定理,求点坐标,综合掌握各知识点并熟练应用解决问题是解题的关键.

    相关试卷

    模拟测评湖南省岳阳市中考数学历年模拟汇总 卷(Ⅲ)(含答案详解):

    这是一份模拟测评湖南省岳阳市中考数学历年模拟汇总 卷(Ⅲ)(含答案详解),共31页。试卷主要包含了有理数 m,下列计算中,正确的是等内容,欢迎下载使用。

    模拟测评湖南省中考数学历年模拟汇总 卷(Ⅲ)(含答案及详解):

    这是一份模拟测评湖南省中考数学历年模拟汇总 卷(Ⅲ)(含答案及详解),共32页。

    模拟测评湖南省中考数学五年模拟汇总 卷(Ⅲ)(含答案详解):

    这是一份模拟测评湖南省中考数学五年模拟汇总 卷(Ⅲ)(含答案详解),共33页。试卷主要包含了下列语句中,不正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map