模拟测评湖南省汨罗市中考数学三年高频模拟汇总卷(含答案及解析)
展开
这是一份模拟测评湖南省汨罗市中考数学三年高频模拟汇总卷(含答案及解析),共21页。试卷主要包含了一元二次方程的根为.,下列计算中,正确的是,下列运算正确的是等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、有理数a,b在数轴上对应的位置如图所示,则下列结论正确的是( ).
A.B.C.D.
2、北京冬奥会标志性场馆国家速滑馆“冰丝带”近12000平方米的冰面采用分模块控制技术,可根据不同项目分区域、分标准制冰.将12000用科学记数法表示为( )
A.B.C.D.
3、如图,在平面直角坐标系xOy中,已知点A(1,0),B(3,0),C为平面内的动点,且满足∠ACB=90°,D为直线y=x上的动点,则线段CD长的最小值为( )
A.1B.2C.D.
4、一元二次方程的根为( ).
A.B.
C.,D.,
5、下列计算中,正确的是( )
A.a2+a3=a5B.a•a=2aC.a•3a2=3a3D.2a3﹣a=2a2
6、如图,在中,,D是BC的中点,垂足为D,交AB于点E,连接CE.若,,则BE的长为( )
A.3B.C.4D.
7、如图是由4个相同的小正方体组成的立体图形,则下面四个平面图形中不是这个立体图形的三视图的是( )
A.B.C.D.
8、如图,在中,D是延长线上一点,,,则的度数为( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.B.C.D.
9、下列运算正确的是( )
A.B.C.D.
10、如图,A、B、C、D为一个正多边形的顶点,O为正多边形的中心,若,则这个正多边形的边数为( )
A.10B.11C.12D.13
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若代数式的值是3,则多项式的值是______.
2、已知点A(x1,y1)、B(x2,y2)为函数y=﹣2(x﹣1)2+3的图象上的两点,若x1<x2<0,则y1_____y2(填“>”、“=”或“<”),
3、长方形纸片按图中方式折叠,其中为折痕,如果折叠后在一条直线上,那么的大小是________度.
4、如图,在中,,,,蚂蚁甲从点A出发,以1.5cm/s的速度沿着三角形的边按的方向行走,甲出发1s后蚂蚁乙从点A出发,以2cm/s的速度沿着三角形的边按的方向行走,那么甲出发________s后,甲乙第一次相距2cm.
5、某树主干长出x根枝干,每个枝干又长出x根小分支,若主干、枝干和小分支总数共133根,则主干长出枝干的根数x为______.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在平面直角坐标系中,在第二象限,且,,.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)作出关于轴对称的,并写出,的坐标;
(2)在轴上求作一点,使得最小,并求出最小值及点坐标.
2、某商品每天可售出300件,每件获利2元.为了尽快减少库存,店主决定降价销售.根据经验可知,如果每件降价0.1元,平均每天可多售出20件,店主要想平均每天获利500元,每件商品应降价多少元?
3、如图,在平面直角坐标系xOy中,直线l是第一、三象限的角平分线.已知的三个顶点坐标分别为,,.
(1)若与关于y轴对称,画出;
(2)若在直线l上存在点P,使的周长最小,则点P的坐标为______.
4、若2x=4y+1,27y=3x﹣1,试求x与y的值.
5、如图,点A在的一边OA上.按要求画图并填空.
(1)过点A画直线,与的另一边相交于点B;
(2)过点A画OB的垂线AC,垂足为点C;
(3)过点C画直线,交直线AB于点D;
(4)直接写出______°;
(5)如果,,,那么点A到直线OB的距离为______.
-参考答案-
一、单选题
1、D
【分析】
先根据数轴可得,再根据有理数的减法法则、绝对值性质逐项判断即可得.
【详解】
解:由数轴的性质得:.
A、,则此项错误;
B、,则此项错误;
C、,则此项错误;
D、,则此项正确;
故选:D.
【点睛】
本题考查了数轴、有理数的减法、绝对值,熟练掌握数轴的性质是解题关键.
2、C
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
科学记数法的形式是: ,其中<10,为整数.所以,取决于原数小数点的移动位数与移动方向,是小数点的移动位数,往左移动,为正整数,往右移动,为负整数.本题小数点往左移动到4的后面,所以
【详解】
解:12000
故选C
【点睛】
本题考查的知识点是用科学记数法表示绝对值较大的数,关键是在理解科学记数法的基础上确定好的值,同时掌握小数点移动对一个数的影响.
3、C
【分析】
取AB的中点E,过点E作直线y=x的垂线,垂足为D,求出DE长即可求出答案.
【详解】
解:取AB的中点E,过点E作直线y=x的垂线,垂足为D,
∵点A(1,0),B (3,0),
∴OA=1,OB=3,
∴OE=2,
∴ED=2×=,
∵∠ACB=90°,
∴点C在以AB为直径的圆上,
∴线段CD长的最小值为−1.
故选:C.
【点睛】
本题考查了垂线段最短,一次函数图象上点的坐标特征,圆周角定理等知识,确定C,D两点的位置是解题的关键.
4、A
【分析】
根据方程特点,利用直接开平方法,先把方程两边开方,即可求出方程的解.
【详解】
解:,
两边直接开平方,得,
则.
故选:A.
【点睛】
此题主要考查了直接开平方法解一元二次方程,解题的关键是掌握直接开平方法的基本步骤及方法.
5、C
【分析】
根据整式的加减及幂的运算法则即可依次判断.
【详解】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A. a2+a3不能计算,故错误;
B. a•a=a2,故错误;
C. a•3a2=3a3,正确;
D. 2a3﹣a=2a2不能计算,故错误;
故选C.
【点睛】
此题主要考查幂的运算即整式的加减,解题的关键是熟知其运算法则.
6、D
【分析】
勾股定理求出CE长,再根据垂直平分线的性质得出BE=CE即可.
【详解】
解:∵,,,
∴,
∵,D是BC的中点,垂足为D,
∴BE=CE,
故选:D.
【点睛】
本题考查了勾股定理,垂直平分线的性质,解题关键是熟练运用勾股定理求出CE长.
7、A
【分析】
根据几何体的三视图,是分别从几何体的正面、左面和上面看物体而得到的图形,对每个选项分别判断、解答.
【详解】
解:B是俯视图,C是左视图,D是主视图,
故四个平面图形中A不是这个几何体的三视图.
故选:A.
【点睛】
本题考查了简单组合体的三视图,掌握几何体的主视图、左视图和俯视图,是分别从几何体的正面、左面和上面看物体而得到的图形是解题的关键.
8、B
【分析】
根据三角形外角的性质可直接进行求解.
【详解】
解:∵,,
∴;
故选B.
【点睛】
本题主要考查三角形外角的性质,熟练掌握三角形外角的性质是解题的关键.
9、C
【分析】
根据合并同类项法则解答即可.
【详解】
解:A、3x和4y不是同类项,不能合并,故A选项错误;
B、,故B选项错误;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
C、,故C选项正确;
D、,故D选项错误,
故选:C.
【点睛】
本题考查合并同类项,熟练掌握合并同类项法则是解答的关键.
10、A
【分析】
作正多边形的外接圆,连接 AO,BO,根据圆周角定理得到∠AOB=36°,根据中心角的定义即可求解.
【详解】
解:如图,作正多边形的外接圆,连接AO,BO,
∴∠AOB=2∠ADB=36°,
∴这个正多边形的边数为=10.
故选:A.
【点睛】
此题主要考查正多边形的性质,解题的关键是熟知圆周角定理.
二、填空题
1、1
【解析】
【分析】
先观察,再由已知求出6a-3b=9,然后整体代入求解即可.
【详解】
解:∵2a-b=3,
∴6a-3b=9,
∴6a-(3b+8)=(6a-3b)-8=9-8=1,
故答案为:1.
【点睛】
本题考查代数式求值、整式的加减,利用整体代入求解是解答的关键.
2、<
【解析】
【分析】
找到二次函数对称轴,根据二次函数的增减性即可得出结论.
【详解】
解:∵y=﹣2(x﹣1)2+3,
∴抛物线y=﹣2(x﹣1)2+3的开口向下,对称轴为x=1,
∴在x<1时,y随x的增大而增大,
∵x1<x2<0,
∴y1<y2.
故答案为:<.
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
本题考查二次函数的增减性,掌握其增减规律,找到对称轴是解本题关键.
3、90
【解析】
【分析】
根据折叠的性质,∠1=∠2,∠3=∠4,利用平角,计算∠2+∠3的度数即可.
【详解】
如图,根据折叠的性质,∠1=∠2,∠3=∠4,
∵∠1+∠2+∠3+∠4=180°,
∴2∠2+2∠3=180°,
∴∠2+∠3=90°,
∴=90°,
故答案为:90.
【点睛】
本题考查了折叠的性质,两个角的和,熟练掌握折叠的性质,灵活运用两个角的和是解题的关键.
4、4
【解析】
【分析】
根据题意,找出题目的等量关系,列出方程,解方程即可得到答案.
【详解】
解:根据题意,
∵,,,
∴周长为:(cm),
∵甲乙第一次相距2cm,则甲乙没有相遇,
设甲行走的时间为t,则乙行走的时间为,
∴,
解得:;
∴甲出发4秒后,甲乙第一次相距2cm.
故答案为:4.
【点睛】
本题考查了一元一次方程的应用,解题的关键是熟练掌握题意,正确的列出方程.
5、
【解析】
【分析】
某树主干长出x根枝干,每个枝干又长出x根小分支,则小分支有根,可得主干、枝干和小分支总数为根,再列方程解方程,从而可得答案.
【详解】
解:某树主干长出x根枝干,每个枝干又长出x根小分支,则
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解得:
经检验:不符合题意;取
答:主干长出枝干的根数x为
故答案为:
【点睛】
本题考查的是一元二次方程的应用,理解题意,用含的代数式表示主干、枝干和小分支总数是解本题的关键.
三、解答题
1、
(1)见解析,,
(2)见解析,,
【分析】
(1)由题意依据作轴对称图形的方法作出关于轴对称的,进而即可得出,的坐标;
(2)根据题意作关于轴的对称点,连接两点与轴的交点即为点,进而设直线的解析式为并结合勾股定理进行求解.
(1)
解:如图所示,即为所求.,
(2)
解:如图点即为所求.点关于轴对称点.
设直线的解析式为.
将,代入得
,,
∴直线
当时,.,,
最小.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题考查画轴对称图形以及勾股定理,熟练掌握并利用轴对称的性质解决线段和的最小值是解题的关键.
2、每件商品应降价1元.
【分析】
设每件商品应降价x元,得出降价后的销量及每件的盈利,然后可列出方程,解出即可.
【详解】
解:设每件商品应降价x元,则每天可售出300+20=300+200x件,
由题意得:(2-x)(300+200x)=500,
解得:x=(舍去)或x=1.
每件商品应降价1元.
【点睛】
本题考查一元二次方程的应用,关键找到降价和卖的件数的关系,根据利润列方程求解.
3、
(1)见解析
(2)
【分析】
(1)根据关于y轴对称的点的坐标特征,先得到A、B、C关于y轴对称的对应点、、的坐标,然后在坐标系中描出、、三点,最后顺次连接、、三点即可得到答案;
(2)作B关于直线l的对称点,连接与直线l交于点P,点P即为所求.
(1)
解:如图所示,即为所求;
(2)
解:如图所示,作B关于直线l的对称点,连接与直线l交于点P,点P即为所求,
由图可知点P的坐标为(3,3).
【点睛】
本题主要考查了画轴对称图形,关于y轴对称的点的坐标特征,轴对称—最短路径问题,熟知相关知识是解题的关键.
4、
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【分析】
根据幂的乘方的意义得到二元一次方程组,再进行计算即可.
【详解】
解:∵2x=4y+1,27y=3x﹣1,
∴
∴
整理得,
①+②得,
把代入①得,
∴
∴方程组的解为
【点睛】
本题主要考查了幂的乘方和解二元一次方程组,熟练掌握解题步骤是解答本题的关键.
5、(1)图见解析;(2)图见解析;(3)图见解析;(4)90;(5).
【分析】
(1)根据垂线的画法即可得;
(2)根据垂线的画法即可得;
(3)根据平行线的画法即可得;
(4)根据平行线的性质可得;
(5)利用三角形的面积公式即可得.
【详解】
解:(1)如图,直线即为所求;
(2)如图,垂线即为所求;
(3)如图,直线即为所求;
(4),
,
,
,
故答案为:90;
(5),
,即,
解得,
即点到直线的距离为,
故答案为:.
【点睛】
本题考查了画垂线和平行线、平行线的性质、点到直线的距离等知识点,熟练掌握平行线的画法和性· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
质是解题关键.
相关试卷
这是一份模拟测评湖南省汨罗市中考数学模拟模拟 (B)卷(含答案解析),共28页。试卷主要包含了下列运算正确的是,一元二次方程的根为,下列方程中,解为的方程是等内容,欢迎下载使用。
这是一份模拟测评湖南省长沙市中考数学三年高频模拟汇总 卷(Ⅲ)(精选),共21页。试卷主要包含了如图,A,已知,则的补角等于,下列各式中,不是代数式的是,有理数 m等内容,欢迎下载使用。
这是一份模拟汇总湖南省汨罗市中考数学三年高频真题汇总 卷(Ⅱ)(含答案详解),共28页。试卷主要包含了下列现象等内容,欢迎下载使用。