终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    中职数学 高教版(2021·十四五)基础模块上册 1.1集合及其表示 PPT课件+教案+课内练习题答案

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 课件
      1.1 集合及其表示课件.pptx
    • 教案
      1.1 集合及其表示教案.docx
    • 练习
      1.1集合及其表示 课内习题答案.docx
    1.1 集合及其表示课件第1页
    1.1 集合及其表示课件第2页
    1.1 集合及其表示课件第3页
    1.1 集合及其表示课件第4页
    1.1 集合及其表示课件第5页
    1.1 集合及其表示课件第6页
    1.1 集合及其表示课件第7页
    1.1 集合及其表示课件第8页
    1.1 集合及其表示教案第1页
    1.1 集合及其表示教案第2页
    1.1 集合及其表示教案第3页
    1.1集合及其表示 课内习题答案第1页
    还剩24页未读, 继续阅读
    下载需要60学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高教版(2021·十四五)基础模块 上册1.1 集合及其表示优质课练习题习题课件ppt

    展开

    这是一份高教版(2021·十四五)基础模块 上册1.1 集合及其表示优质课练习题习题课件ppt,文件包含11集合及其表示课件pptx、11集合及其表示教案docx、11集合及其表示课内习题答案docx等3份课件配套教学资源,其中PPT共32页, 欢迎下载使用。
    在义务教育阶段,我们已经学习过一些集合,如正整数的集合、 实数的集合、所有正方形的集合等.为了更有效地使用集合语言,我们需要进一步学习集合的有关知识.
    1.1 集合及其表示
    1.1.1 集合的概念
    图书馆专区内所有数学书可以组成一个集合.
    中国古代四大发明可以组成一个集合.
    平面上到原点O的距离等于1的所有点可以组成一个集合.
    人们常会将一些研究对象组成一个整体,并且用“集合”这个词表示这个整体.
    一般地,由某些确定的对象组成的整体称为集合,简称为集.组成这个集合的对象称为这个集合的元素.
    在“情境与问题”中,指南针、造纸术、火药和印刷术都是四大发明组成的集合的元素; 数学书籍专区中的每本书都是专区内所有的数学书籍这个集合的元素; 圆上所有的点都是“平面内到圆心的距离等于半径的所有点”组成的集合的元素.
    例1 判断下列对象能否组成集合?(1)小于6的所有自然数;(2)方程x2+3x−4=0的所有实数解;(3)所有的平行四边形;(4)某班级中所有高个子同学.
    组成集合的对象必须是确定的,不能确定的对象不能组成集合.如例1(4),因为不能确定哪些同学是“高个子”,所以该班高个子同学的全体不能组成一个集合.但该班身高为1.75m及以上的同学的全体能组成一个集合,这个集合里的元素就是身高为1.75m及以上的同学.
    集合常用大写英文字母表示.如,A,B,C,….;集合的元素常用小写英文字母表示.如,a,b,c,….
    如果a是集合A的元素,就说a属于A,记作a∈A,读作“a属于A”.如果a不是集合A的元素,就说a不属于A,记作a∉A,读作“a不属于A”.
    例2 方程x2=4的所有实数解组成的集合为A,则-2_____A,5_____A(用符号“∈ ”或“∉”填空).
    解 因为(-2)²=4,所以-2是方程x ²=4的解,故-2∈A.因为5 ²≠4, 所以5不是方程 x ²=4的解,故5∉ A .
    组成集合的对象必须是确定的;同一个集合中的元素必须是互不相同的.
    含有有限个元素的集合称为有限集,含有无限个元素的集合称为无限集.
    小于6的所有自然数组成的集合、方程x2+3x−4=0的所有实数解组成的集合都是有限集;所有的平行四边形组成的集合、不等式x−33}
    2.描述法:利用元素的特征性质来表示集合的方法称为描述法.描述法表示集合时,在花括号“{ }”中画一条竖线,竖线的左侧是集合的代表元素及取值范围,竖线的右侧是元素所具有的特征性质.
    约定:如果集合的元素是实数,那么“∈R”可略去不写,例如,{x∈R|x>3}可以简写为{x|x>3}.
    例4 用描述法表示下列集合: (1)小于1的所有整数组成的集合 (2)所有偶数组成的集合 (3)在平面直角坐标系中,由第一象限内的所有点组成的集合
    {x| x=2k, k∈Z},也可以表示为{偶数}
    {(x,y) | x>0,y>0}
    例5 用写出不等式2x+1>9的解集.
    解 由不等式2x+1>9,得 2x>8,故 x>4.因此不等式2x+1>9的解集可以用描述法表示为{x|x>4} .
    例6 分别用列举法和描述法表示方程x²-9=0的解集.
    解 解方程x²-9=0,得x1=-3,x2=3.故方程的解组成的集合用列举法表示为{-3,3},
    用描述法表示为{x|x=-3或x=3}.
    有些集合适宜用列举法表示,有些集合适宜用描述法表示,有些集合两种方法都适用,要根据需要具体问题选择适当的方法.
    1.用列举法表示下列集合:(1)大于-5且小于9的所有奇数组成的集合;(2)方程x²-2x-3=0的解集.
    2.用描述法表示下列集合. (1)大于-1且小于3的所有实数组成的集合; (2)平方等于9的所有实数组成的集合.

    相关课件

    数学基础模块 上册第一章 集合1.1 集合及其表示精品练习题习题课件ppt:

    这是一份数学基础模块 上册第一章 集合1.1 集合及其表示精品练习题习题课件ppt,文件包含11集合及其表示课件pptx、11集合及其表示教案docx、11集合及其表示课内习题答案docx等3份课件配套教学资源,其中PPT共32页, 欢迎下载使用。

    中职数学高教版(2021·十四五)基础模块 上册1.1 集合及其表示完美版课件ppt:

    这是一份中职数学高教版(2021·十四五)基础模块 上册1.1 集合及其表示完美版课件ppt,共17页。PPT课件主要包含了集合与元素,元素的性质,元素与集合间关系等内容,欢迎下载使用。

    中职数学高教版(2021·十四五)基础模块 上册1.1 集合及其表示获奖ppt课件:

    这是一份中职数学高教版(2021·十四五)基础模块 上册1.1 集合及其表示获奖ppt课件,共16页。PPT课件主要包含了这个以后会学到,温馨提示等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map