高考数学二轮专题——数列满分通关20讲
展开
这是一份高考数学二轮专题——数列满分通关20讲,文件包含专题20数列不等式恒成立与存在性问题大题教师版pdf、专题16数列的奇偶项讨论问题教师版pdf、专题13裂项相消法求和教师版docx、专题12等差等比数列的综合应用教师版pdf、专题17数列不等式的证明教师版docx、专题14错位相减法求和教师版docx、专题02数列中的最值问题教师版pdf、专题15分组转化法求和教师版docx、专题21数列中的结构不良问题教师版docx、专题11等比数列的判定与证明教师版docx、专题07等差数列的性质及应用教师版docx、专题22数列中的数学文化问题教师版docx、专题18用导数证明数列不等式教师版docx、专题01数列的概念及性质教师版docx、专题03用an与Sn的关系求通项公式教师版docx、专题09等比数列基本量的计算教师版docx、专题08等差数列的判定与证明教师版docx、专题06等差数列基本量的计算教师版docx、专题05用构造辅助数列通项公式教师版docx、专题19数列不等式恒成立与存在性问题小题教师版docx、专题10等比数列的性质及应用教师版docx、专题04用累加法与累乘法求通项公式教师版docx、数列满分通关20讲编辑精美题型丰富尖子生必备docx、数列满分通关20讲编辑精美题型丰富尖子生必备pdf等24份试卷配套教学资源,其中试卷共641页, 欢迎下载使用。
错位相减法求和
1.错位相减法:错位相减法是在推导等比数列的前n项和公式时所用的方法,适用于各项由一个等差数列和一个等比数列对应项的乘积组成的数列.把Sn=a1+a2+…+an两边同乘以相应等比数列的公比q,得到qSn=a1q+a2q+…+anq,两式错位相减即可求出Sn.
用错位相减法求和时,应注意:
(1)要善于识别题目类型,特别是等比数列公比为负数的情形.
(2)在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确地写出“Sn-qSn”的表达式.
(3)在应用错位相减法时,注意观察未合并项的正负号;结论中形如an,an+1的式子应进行合并.
如:已知un=an+an-1b+an-2b2+…+abn-1+bn(a>0,b>0,n∈N*).
(1)当a=2,b=3时,求un;
(2)若a=b,求数列{un}的前n项和Sn.
解析 (1)当a=2,b=3时,un=2n+2n-1·3+2n-2·32+…+2·3n-1+3n(n∈N*),
两边除以2n,得eq \f(un,2n)=1+eq \f(3,2)+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)))2+…+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)))n-1+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)))n=eq \f(1-\b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)))n+1,1-\f(3,2))=eq \f(2\b\lc\(\rc\)(\a\vs4\al\c1(1-\f(3n+1,2n+1))),-1)=eq \f(3n+1,2n)-2,
所以un=3n+1-2n+1.
(2)若a=b,则un=(n+1)an,所以Sn=2a+3a2+4a3+…+(n+1)an,①
当a=1时,Sn=2+3+…+(n+1)=eq \f(nn+3,2);
当a>0,a≠1时,在①的两边同乘以a,得aSn=2a2+3a3+4a4+…+(n+1)an+1,
与①式作差,得(1-a)Sn=2a+a2+a3+…+an-(n+1)an+1=a+eq \f(a1-an,1-a)-(n+1)an+1,
所以Sn=eq \f(a,1-a)+eq \f(a1-an,1-a2)-eq \f(n+1an+1,1-a).
综上,Sn=eq \b\lc\{\rc\ (\a\vs4\al\c1(\f(nn+3,2),a=1,,\f(a-n+1an+1,1-a)+\f(a1-an,1-a2),a>0,a≠1.))
【基本题型】
1.等差(比)数列+错位相减法型
[例1] 已知等差数列{an}的前n项和为Sn,a1=2,且eq \f(S10,10)=eq \f(S5,5)+5.
(1)求an;
(2)若bn=an·4eq \s\up6(\f(Sn,an))求数列{bn}的前n项的和Tn.
解析 (1)设等差数列{an}的公差为d,因为eq \f(S10,10)=eq \f(S5,5)+5,所以eq \f(\f(10(a1+a10),2),10)-eq \f(\f(5(a1+a5),2),5)=5,
所以a10-a5=10,所以5d=10,解得d=2.所以an=a1+(n-1)d=2+(n-1)×2=2n;
(2)由(1)知,an=2n,所以Sn=eq \f(n(2+2n),2)=n2+n.所以bn=an·4eq \s\up6(\f(Sn,an))=2n·4eq \s\up6(\f(n2+n,2n))=2n·2n+1=n·2n+2,
所以Tn=1×23+2×24+2×25+…+n·2n+2①,
所以2Tn=1×24+2×25+3×26+…+(n-1)·2n+2+n·2n+3②,
①-②,得-Tn=23+24+…+2n+2-n×2n+3=eq \f(23(1-2n),1-2)-n×2n+3=2n+3-8-n×2n+3
所以Tn=(n-1)×2n+3+8.
[例2] 已知各项均为正数的等比数列{an},满足a1=1,且eq \f(1,a1)-eq \f(1,a2)=eq \f(2,a3).
(1)求等比数列{an}的通项公式;
(2)若数列{bn}满足bn=lg2an+1,求数列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(bn,an)))的前n项和Tn.
解析 (1)由已知eq \f(1,a1)-eq \f(1,a2)=eq \f(2,a3)得:eq \f(1,a1)-eq \f(1,a1q)=eq \f(2,a1q2),又a1=1,∴q=2或q=-1(舍去),∴an=2n-1.
(2)bn=lg22n=n,eq \f(bn,an)=eq \f(n,2n-1)
Tn=eq \f(1,20)+eq \f(2,21)+eq \f(3,22)+…+eq \f(n,2n-1),eq \f(1,2)Tn=eq \f(1,21)+eq \f(2,22)+eq \f(3,23)+…+eq \f(n,2n)
两式相减得:eq \f(1,2)Tn=eq \f(1,20)+eq \f(1,21)+eq \f(1,22)+…+eq \f(1,2n-1)-eq \f(n,2n)=eq \f(1-\f(1,2n),1-\f(1,2))-eq \f(n,2n)=2-eq \f(n+2,2n)
∴Tn=4-eq \f(n+2,2n-1).
[例3] 已知等比数列{an}的前n项和Sn满足4S5=3S4+S6,且a3=9.
(1)求数列{an}的通项公式an;
(2)设bn=(2n-1)·an,求数列{bn}的前n项和Tn.
解析 (1)设数列{an}的公比为q,由4S5=3S4+S6,得S6-S5=3S5-3S4,即a6=3a5,∴q=3,
∴an=9·3n-3=3n-1.
(2)bn=(2n-1)·an=(2n-1)·3n-1,
∴Tn=1·30+3·31+5·32+…+(2n-1)·3n-1,
∴3Tn=1·31+3·32+…+(2n-3)·3n-1+(2n-1)·3n,
∴-2Tn=1+2·31+2·32+…+2·3n-1-(2n-1)·3n=-2+(2-2n)·3n,
∴Tn=1-eq \f(2-2n·3n,2)=(n-1)·3n+1.
[例4] 已知等差数列{an}满足:an+1>an(n∈N*),a1=1,该数列的前三项分别加上1,1,3后成等比数列,an+2lg2bn=-1.
(1)分别求数列{an},{bn}的通项公式;
(2)求数列{an·bn}的前n项和Tn.
解析 (1)设等差数列{an}的公差为d,则d>0,
由a1=1,a2=1+d,a3=1+2d分别加上1,1,3后成等比数列,得(2+d)2=2(4+2d),
解得d=2(舍负),所以an=1+(n-1)×2=2n-1.
又因为an+2lg2bn=-1,所以lg2bn=-n,则bn=eq \f(1,2n).
(2)由(1)知an·bn=(2n-1)·eq \f(1,2n),
则Tn=eq \f(1,21)+eq \f(3,22)+eq \f(5,23)+…+eq \f(2n-1,2n),①,eq \f(1,2)Tn=eq \f(1,22)+eq \f(3,23)+eq \f(5,24)+…+eq \f(2n-1,2n+1),②
由①-②,得eq \f(1,2)Tn=eq \f(1,2)+2×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,22)+\f(1,23)+\f(1,24)+…+\f(1,2n)))-eq \f(2n-1,2n+1).
∴eq \f(1,2)Tn=eq \f(1,2)+2×eq \f(\f(1,4)\b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,2n-1))),1-\f(1,2))-eq \f(2n-1,2n+1),∴Tn=1+2-eq \f(2,2n-1)-eq \f(2n-1,2n)=3-eq \f(4+2n-1,2n)=3-eq \f(3+2n,2n).
[例5] (2020·全国Ⅰ)设{an}是公比不为1的等比数列,a1为a2,a3的等差中项.
(1)求{an}的公比;
(2)若a1=1,求数列{nan}的前n项和.
解析 (1)设{an}的公比为q,∵a1为a2,a3的等差中项,
∴2a1=a2+a3=a1q+a1q2,a1≠0,∴q2+q-2=0,∵q≠1,∴q=-2.
(2)设{nan}的前n项和为Sn,a1=1,an=(-2)n-1,
Sn=1×1+2×(-2)+3×(-2)2+…+n(-2)n-1,①
-2Sn=1×(-2)+2×(-2)2+3×(-2)3+…+(n-1)·(-2)n-1+n(-2)n,②
①-②得,3Sn=1+(-2)+(-2)2+…+(-2)n-1-n(-2)n=eq \f(1--2n,1--2)-n(-2)n=eq \f(1-1+3n-2n,3),
∴Sn=eq \f(1-1+3n-2n,9),n∈N*.
[例6] (2017·天津)已知{an}为等差数列,前n项和为Sn(n∈N*),{bn}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.
(1)求{an}和{bn}的通项公式;
(2)求数列{a2nb2n-1}的前n项和(n∈N*).
解析 (1)设等差数列{an}的公差为d,等比数列{bn}的公比为q.
由已知b2+b3=12,得b1(q+q2)=12,而b1=2,所以q2+q-6=0.
又因为q>0,解得q=2,所以bn=2n.由b3=a4-2a1,可得3d-a1=8,①
由S11=11b4,可得a1+5d=16,②
联立①②,解得a1=1,d=3,由此可得an=3n-2(n∈N*).
所以数列{an}的通项公式为an=3n-2(n∈N*),数列{bn}的通项公式为bn=2n(n∈N*).
(2)设数列{a2nb2n-1}的前n项和为Tn,由a2n=6n-2,b2n-1=2×4n-1,得a2nb2n-1=(3n-1)×4n,
故Tn=2×4+5×42+8×43+…+(3n-1)×4n,③
4Tn=2×42+5×43+8×44+…+(3n-4)×4n+(3n-1)×4n+1,④
③-④,得-3Tn=2×4+3×42+3×43+…+3×4n-(3n-1)×4n+1
=eq \f(12×1-4n,1-4)-4-(3n-1)×4n+1=-(3n-2)×4n+1-8,
得Tn=eq \f(3n-2,3)×4n+1+eq \f(8,3)(n∈N*).
所以数列{a2nb2n-1}的前n项和为eq \f(3n-2,3)×4n+1+eq \f(8,3)(n∈N*).
[例7] (2017·山东)已知{xn}是各项均为正数的等比数列,且x1+x2=3,x3-x2=2.
(1)求数列{xn}的通项公式;
(2)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P2(x2,2),…,Pn+1(xn+1,n+1)得到折线P1P2…Pn+1,求由该折线与直线y=0,x=x1,x=xn+1所围成的区域的面积Tn.
解析 (1)设数列{xn}的公比为q.由题意得eq \b\lc\{\rc\ (\a\vs4\al\c1(x1+x1q=3,,x1q2-x1q=2.))所以3q2-5q-2=0,
由已知得q>0,所以q=2,x1=1.因此数列{xn}的通项公式为xn=2n-1(n∈N*).
(2)过P1,P2,…,Pn+1向x轴作垂线,垂足分别为Q1,Q2,…,Qn+1.
由(1)得xn+1-xn=2n-2n-1=2n-1,记梯形PnPn+1Qn+1Qn的面积为bn,
由题意得bn=eq \f(n+n+1,2)×2n-1=(2n+1)×2n-2,
所以Tn=b1+b2+…+bn=3×2-1+5×20+7×21+…+(2n-1)×2n-3+(2n+1)×2n-2.①
又2Tn=3×20+5×21+7×22+…+(2n-1)×2n-2+(2n+1)×2n-1,②
①-②得-Tn=3×2-1+(2+22+…+2n-1)-(2n+1)×2n-1=eq \f(3,2)+eq \f(21-2n-1,1-2)-(2n+1)×2n-1.
所以Tn=eq \f(2n-1×2n+1,2)(n∈N*).
【对点精练】
1.(2017·山东)已知{an}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.
(1)求数列{an}的通项公式;
(2){bn}为各项非零的等差数列,其前n项和为Sn.已知S2n+1=bnbn+1,求数列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(bn,an)))的前n项和Tn.
1.解析 (1)设{an}的公比为q,由题意知a1(1+q)=6,aeq \\al(2,1)q=a1q2,
又an>0,由以上两式联立方程组解得a1=2,q=2,所以an=2n.
(2)由题意知S2n+1=eq \f((2n+1)(b1+b2n+1),2)=(2n+1)bn+1,
又S2n+1=bnbn+1,bn+1≠0,所以bn=2n+1.
令cn=eq \f(bn,an),则cn=eq \f(2n+1,2n).
因此Tn=c1+c2+…+cn=eq \f(3,2)+eq \f(5,22)+eq \f(7,23)+…+eq \f(2n-1,2n-1)+eq \f(2n+1,2n),
又eq \f(1,2)Tn=eq \f(3,22)+eq \f(5,23)+eq \f(7,24)+…+eq \f(2n-1,2n)+eq \f(2n+1,2n+1),
两式相减得eq \f(1,2)Tn=eq \f(3,2)+(eq \f(1,2)+eq \f(1,22)+…+eq \f(1,2n-1))-eq \f(2n+1,2n+1)=eq \f(3,2)+eq \f(\f(1,2)[1-(\f(1,2))n-1],1-\f(1,2))-eq \f(2n+1,2n+1)=eq \f(5,2)-eq \f(2n+5,2n+1),
所以Tn=5-eq \f(2n+5,2n).
2.已知等比数列{an}中,a1+a2=8,a2+a3=24,Sn为数列{an}的前n项和.
(1)求数列{an}的通项公式;
(2)若bn=an·lg3(Sn+1),求数列{bn}的前n项和Tn.
2.解析 (1)设等比数列{an}的公比为q,则q=eq \f(a2+a3,a1+a2)=eq \f(24,8)=3.
故a1+a2=a1+3a1=8,解得a1=2.所以an=a1qn-1=2×3n-1.
(2)由(1)知Sn=3n-1,所以bn=an·lg3(Sn+1)=2×3n-1×lg33n=2n×3n-1,
所以Tn=b1+b2+b3+…+bn=2×30+4×31+6×32+…+2(n-1)×3n-2+2n×3n-1,①
3Tn=2×31+4×32+6×33+…+2(n-1)×3n-1+2n×3n,②
①-②得-2Tn=2×30+2×31+2×32+2×33+…+2×3n-1-2n×3n=3n(1-2n)-1.
所以Tn=eq \f(3n2n-1+1,2).
3.已知正项等比数列{an}的前n项和Sn满足:Sn+2=eq \f(1,4)Sn+eq \f(3,2).
(1)求数列{an}的首项a1和公比q;
(2)若bn=nan,求数列{bn}的前n项和Tn.
3.解析 (1)因为Sn+2=eq \f(1,4)Sn+eq \f(3,2),所以S3=eq \f(1,4)S1+eq \f(3,2),S4=eq \f(1,4)S2+eq \f(3,2),两式相减得:a4=eq \f(1,4)a2,
所以q2=eq \f(1,4),又q>0,则q=eq \f(1,2).又由S3=eq \f(1,4)S1+eq \f(3,2),可知:a1+a2+a3=eq \f(1,4)a1+eq \f(3,2),
所以a1eq \b\lc\(\rc\)(\a\vs4\al\c1(1+\f(1,2)+\f(1,4)))=eq \f(1,4)a1+eq \f(3,2),所以a1=1.
(2)由(1)知an=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n-1,所以bn=eq \f(n,2n-1),
所以Tn=1+eq \f(2,2)+eq \f(3,22)+…+eq \f(n,2n-1),eq \f(1,2)Tn=eq \f(1,2)+eq \f(2,22)+…+eq \f(n-1,2n-1)+eq \f(n,2n).
两式相减得eq \f(1,2)Tn=1+eq \f(1,2)+…+eq \f(1,2n-1)-eq \f(n,2n)=2-eq \f(1,2n-1)-eq \f(n,2n).所以Tn=4-eq \f(n+2,2n-1).
4.已知各项均为正数的等差数列{an}中,a1+a2+a3=15,且a1+2,a2+5,a3+13构成等比数列{bn}的
前三项.
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和Tn.
4.解析 (1)设等差数列的公差为d,则由已知得,a1+a2+a3=3a2=15,即a2=5,
又(5-d+2)(5+d+13)=100,解得d=2或d=-13(舍去),a1=a2-d=3,
∴an=a1+(n-1)×d=2n+1,又b1=a1+2=5,b2=a2+5=10,∴q=2,∴bn=5·2n-1.
(2)由(1)知anbn=(2n+1)·5·2n-1=5·(2n+1)·2n-1,
∵Tn=5[3+5×2+7×22+…+(2n+1)×2n-1],
2Tn=5[3×2+5×22+7×23+…+(2n+1)×2n],
两式相减得-Tn=5[3+2×2+2×22+…+2×2n-1-(2n+1)×2n]=5[(1-2n)2n-1],
则Tn=5[(2n-1)2n+1].
5.已知等比数列{an}的公比q>1,a1=1,且2a2,a4,3a3成等差数列.
(1)求数列{an}的通项公式;
(2)记bn=2nan,求数列{bn}的前n项和Tn.
5.解析 (1)由2a2,a4,3a3成等差数列可得2a4=2a2+3a3,即2a1q3=2a1q+3a1q2,
又q>1,a1=1,故2q2=2+3q,即2q2-3q-2=0,得q=2,
因此数列{an}的通项公式为an=2n-1.
(2)bn=2n×2n-1=n×2n,
Tn=1×2+2×22+3×23+…+n×2n,①.2Tn=1×22+2×23+3×24+…+n×2n+1,②
①-②得-Tn=2+22+23+…+2n-n×2n+1,-Tn=eq \f(2(2n-1),2-1)-n×2n+1,
Tn=(n-1)×2n+1+2.
6.已知数列{an}是等比数列,a2=4,a3+2是a2和a4的等差中项.
(1)求数列{an}的通项公式;
(2)设bn=2lg2an-1,求数列{anbn}的前n项和Tn.
6.解析 (1)设数列{an}的公比为q,因为a2=4,所以a3=4q,a4=4q2.
因为a3+2是a2和a4的等差中项,所以2(a3+2)=a2+a4.
即2(4q+2)=4+4q2,化简得q2-2q=0.因为公比q≠0,所以q=2.
所以an=a2qn-2=4×2n-2=2n(n∈N*).
(2)因为an=2n,所以bn=2lg2an-1=2n-1,所以anbn=(2n-1)2n,
则Tn=1×2+3×22+5×23+…+(2n-3)2n-1+(2n-1)2n,①
2Tn=1×22+3×23+5×24+…+(2n-3)2n+(2n-1)2n+1.②
由①-②得,-Tn=2+2×22+2×23+…+2×2n-(2n-1)2n+1
=2+2×eq \f(4(1-2n-1),1-2)-(2n-1)2n+1=-6-(2n-3)2n+1,
所以Tn=6+(2n-3)2n+1.
7.已知{an}为等差数列,前n项和为Sn(n∈N*),{bn}是首项为2的等比数列,且公比大于0,b2+b3=12,
b3=a4-2a1,S11=11b4.
(1)求{an}和{bn}的通项公式;
(2)求数列{a2nbn}的前n项和(n∈N*).
7.解析 (1)设等差数列{an}的公差为d,等比数列{bn}的公比为q.
由已知b2+b3=12,得b1(q+q2)=12,
而b1=2,所以q2+q-6=0.
因为q>0,解得q=2,所以bn=2n.
由b3=a4-2a1,可得3d-a1=8. ①
由S11=11b4,可得a1+5d=16. ②
联立①②,解得a1=1,d=3,
由此可得an=3n-2.
所以{an}的通项公式为an=3n-2,{bn}的通项公式为bn=2n.
(2)设数列{a2nbn}的前n项和为Tn,由a2n=6n-2,有
Tn=4×2+10×22+16×23+…+(6n-2)×2n,
2Tn=4×22+10×23+16×24+…+(6n-8)×2n+(6n-2)×2n+1,
上述两式相减,得
-Tn=4×2+6×22+6×23+…+6×2n-(6n-2)×2n+1=eq \f(12×(1-2n),1-2)-4-(6n-2)×2n+1
=-(3n-4)2n+2-16,
得Tn=(3n-4)2n+2+16.所以数列{a2nbn}的前n项和为(3n-4)2n+2+16.
2.f(Sn,an)=1+错位相减法型
[例8] 已知数列{an}的前n项和为Sn,a1=1,当n≥2时,2Sn=(n+1)an-2.
(1)求a2,a3和通项an;
(2)设数列{bn}满足bn=an·2n-1,求{bn}的前n项和Tn.
解析 (1)当n=2时,2S2=2(1+a2)=3a2-2,则a2=4,
当n=3时,2S3=2(1+4+a3)=4a3-2,则a3=6,
当n≥2时,2Sn=(n+1)an-2,
当n≥3时,2Sn-1=nan-1-2,
所以当n≥3时,2(Sn-Sn-1)=(n+1)an-nan-1=2an,即2an=(n+1)an-nan-1,
整理可得(n-1)an=nan-1,所以eq \f(an,n)=eq \f(an-1,n-1),因为eq \f(a3,3)=eq \f(a2,2)=2,所以eq \f(an,n)=eq \f(an-1,n-1)=…=eq \f(a3,3)=eq \f(a2,2)=2,
因此,当n≥2时,an=2n,而a1=1,故an=eq \b\lc\{\rc\ (\a\vs4\al\c1(1,n=1,,2n,n≥2.))
(2)由(1)可知bn=eq \b\lc\{\rc\ (\a\vs4\al\c1(1,n=1,,n·2n,n≥2,))所以当n=1时,T1=b1=1,
当n≥2时,Tn=b1+b2+b3+…+bn,则
Tn=1+2×22+3×23+…+(n-1)×2n-1+n×2n,
2Tn=2+2×23+3×24+…+(n-1)×2n+n×2n+1,
作差得Tn=1-8-(23+24+…+2n)+n×2n+1=(n-1)×2n+1+1,
易知当n=1时,也满足上式,
故Tn=(n-1)×2n+1+1(n∈N*).
[例9] 已知数列{an}的前n项和为Sn,且满足Sn-n=2(an-2)(n∈N*).
(1)证明:数列{an-1}为等比数列;
(2)若bn=an·lg2(an-1),数列{bn}的前n项和为Tn,求Tn.
解析 (1)∵Sn-n=2(an-2),当n≥2时,Sn-1-(n-1)=2(an-1-2),
两式相减,得an-1=2an-2an-1,∴an=2an-1-1,∴an-1=2(an-1-1),
∴eq \f(an-1,an-1-1)=2(n≥2)(常数).又当n=1时,a1-1=2(a1-2),得a1=3,a1-1=2,
∴数列{an-1}是以2为首项,2为公比的等比数列.
(2)由(1)知,an-1=2×2n-1=2n,∴an=2n+1,
又bn=an·lg2(an-1),∴bn=n(2n+1),
∴Tn=b1+b2+b3+…+bn=(1×2+2×22+3×23+…+n×2n)+(1+2+3+…+n),
设An=1×2+2×22+3×23+…+(n-1)×2n-1+n×2n,
则2An=1×22+2×23+…+(n-1)×2n+n×2n+1,
两式相减,得-An=2+22+23+…+2n-n×2n+1=eq \f(21-2n,1-2)-n×2n+1,
∴An=(n-1)×2n+1+2.又1+2+3+…+n=eq \f(nn+1,2),
∴Tn=(n-1)×2n+1+2+eq \f(nn+1,2)(n∈N*).
[例10] 已知数列{an}的前n项和是Sn,且Sn+eq \f(1,2)an=1(n∈N*).数列{bn}是公差d不等于0的等差数列,且满足:b1=eq \f(3,2)a1,b2,b5,b14成等比数列.
(1)求数列{an},{bn}的通项公式;
(2)设cn=an·bn,求数列{cn}的前n项和Tn.
解析 (1)n=1时,a1+eq \f(1,2)a1=1,a1=eq \f(2,3),n≥2时,eq \b\lc\{\rc\ (\a\vs4\al\c1(Sn=1-\f(1,2)an,,Sn-1=1-\f(1,2)an-1,))
Sn-Sn-1=eq \f(1,2)eq \b\lc\(\rc\)(\a\vs4\al\c1(an-1-an)),∴an=eq \f(1,3)an-1(n≥2),{an}是以eq \f(2,3)为首项,eq \f(1,3)为公比的等比数列,
an=eq \f(2,3)×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)))n-1=2eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)))n.
b1=1,由beq \\al(2,5)=b2b14得,eq \b\lc\(\rc\)(\a\vs4\al\c1(1+4d))2=eq \b\lc\(\rc\)(\a\vs4\al\c1(1+d))eq \b\lc\(\rc\)(\a\vs4\al\c1(1+13d)),d2-2d=0,因为d≠0,解得d=2,
bn=2n-1(n∈N*).
(2)cn=eq \f(4n-2,3n),
Tn=eq \f(2,3)+eq \f(6,32)+eq \f(10,33)+…+eq \f(4n-2,3n),①
eq \f(1,3)Tn=eq \f(2,32)+eq \f(6,33)+eq \f(10,34)+…+eq \f(4n-6,3n)+eq \f(4n-2,3n+1),②
①-②得,eq \f(2,3)Tn=eq \f(2,3)+4eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,32)+\f(1,33)+…+\f(1,3n)))-eq \f(4n-2,3n+1)=eq \f(2,3)+4×eq \f(\f(1,9)-\f(1,3n+1),1-\f(1,3))-eq \f(4n-2,3n+1)=eq \f(4,3)-eq \f(2,3n)-eq \f(4n-2,3n+1),
所以Tn=2-eq \f(2n+2,3n)(n∈N*).
【对点精练】
8.已知数列{an}的前n项和为Sn,a1=5,nSn+1-(n+1)Sn=n2+n.
(1)求证:数列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(Sn,n)))为等差数列;
(2)令bn=2nan,求数列{bn}的前n项和Tn.
8.解析 (1)由nSn+1-(n+1)Sn=n2+n得eq \f(Sn+1,n+1)-eq \f(Sn,n)=1,又eq \f(S1,1)=5,
所以数列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(Sn,n)))是首项为5,公差为1的等差数列.
(2)由(1)可知eq \f(Sn,n)=5+(n-1)=n+4,所以Sn=n2+4n.
当n≥2时,an=Sn-Sn-1=n2+4n-(n-1)2-4(n-1)=2n+3.
又a1=5也符合上式,所以an=2n+3(n∈N*),所以bn=(2n+3)2n,
所以Tn=5×2+7×22+9×23+…+(2n+3)2n,①
2Tn=5×22+7×23+9×24+…+(2n+1)2n+(2n+3)2n+1,②
所以②-①得Tn=(2n+3)2n+1-10-(23+24+…+2n+1)=(2n+3)2n+1-10-eq \f(23(1-2n-1),1-2)
=(2n+3)2n+1-10-(2n+2-8)=(2n+1)2n+1-2.
9.已知数列{an}的前n项和为Sn,若an=-3Sn+4,bn=-lg2an+1.
(1)求数列{an}的通项公式与数列{bn}的通项公式;
(2)令cn=eq \f(bn,2n+1),其中n∈N*,记数列{cn}的前n项和为Tn,求Tn+eq \f(n+2,2n)的值.
9.解析 (1)由题意知a1=1,∵an=-3Sn+4,∴an+1=-3Sn+1+4.
两式相减并化简得an+1=eq \f(1,4)an,∴an=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,4)))eq \s\up12(n-1).bn=-lg2an+1=-lg2eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,4)))eq \s\up12(n)=2n.
(2)由(1)知cn=eq \f(n,2n).则Tn=eq \f(1,2)+eq \f(2,22)+eq \f(3,23)+…+eq \f(n,2n),①
eq \f(1,2)Tn=eq \f(1,22)+eq \f(2,23)+…+eq \f(n-1,2n)+eq \f(n,2n+1),②
①-②得,eq \f(1,2)Tn=eq \f(1,2)+eq \f(1,22)+eq \f(1,23)+…+eq \f(1,2n)-eq \f(n,2n+1)=1-eq \f(n+2,2n+1).
∴Tn=2-eq \f(n+2,2n).可得Tn+eq \f(n+2,2n)=2.
10.已知等差数列{an}中,a2=2,a3+a5=8,数列{bn}中,b1=2,其前n项和Sn满足:bn+1=Sn+2(n∈N*).
(1)求数列{an},{bn}的通项公式;
(2)设cn=eq \f(an,bn),求数列{cn}的前n项和Tn.
10.解析 (1)∵a2=2,a3+a5=8,∴2+d+2+3d=8,∴d=1,∴an=n(n∈N*).
∵bn+1=Sn+2(n∈N*),①
∴bn=Sn-1+2(n∈N*,n≥2).②
由①-②,得bn+1-bn=Sn-Sn-1=bn(n∈N*,n≥2),
∴bn+1=2bn(n∈N*,n≥2).∵b1=2,b2=2b1,
∴{bn}是首项为2,公比为2的等比数列,∴bn=2n(n∈N*).
(2)由cn=eq \f(an,bn)=eq \f(n,2n),得Tn=eq \f(1,2)+eq \f(2,22)+eq \f(3,23)+…+eq \f(n-1,2n-1)+eq \f(n,2n),
eq \f(1,2)Tn=eq \f(1,22)+eq \f(2,23)+eq \f(3,24)+…+eq \f(n-1,2n)+eq \f(n,2n+1),
两式相减,得eq \f(1,2)Tn=eq \f(1,2)+eq \f(1,22)+…+eq \f(1,2n)-eq \f(n,2n+1)=1-eq \f(2+n,2n+1),
∴Tn=2-eq \f(n+2,2n)(n∈N*).
3.f(an+1,an)=0+错位相减法型
[例11] 已知首项为2的数列{an}的前n项和为Sn,且Sn+1=3Sn-2Sn-1(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=eq \f(n+1,an),求数列{bn}的前n项和Tn.
解析 (1)因为Sn+1=3Sn-2Sn-1(n≥2),所以Sn+1-Sn=2Sn-2Sn-1(n≥2),
即an+1=2an(n≥2),所以an+1=2n+1,则an=2n,当n=1时,也满足,
故数列{an}的通项公式为an=2n.
(2)因为bn=eq \f(n+1,2n)=(n+1)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n,
所以Tn=2×eq \f(1,2)+3×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))2+4×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))3+…+(n+1)×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n,①
eq \f(1,2)Tn=2×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))2+3×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))3+4×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))4+…+n×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n+(n+1)×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n+1,②
①-②得eq \f(1,2)Tn=2×eq \f(1,2)+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))2+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))3+…+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n-(n+1)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n+1
=eq \f(1,2)+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))1+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))2+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))3+…+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n-(n+1)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n+1=eq \f(1,2)+eq \f(\f(1,2)\b\lc\[\rc\](\a\vs4\al\c1(1-\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n)),1-\f(1,2))-(n+1)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n+1
=eq \f(1,2)+1-eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n-(n+1)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n+1=eq \f(3,2)-eq \f(n+3,2n+1).
故数列{bn}的前n项和为Tn=3-eq \f(n+3,2n).
[例12] 已知数列{an}满足a1=a3,an+1-eq \f(an,2)=eq \f(3,2n+1),设bn=2nan(n∈N*).
(1)求数列{bn}的通项公式;
(2)求数列{an}的前n项和Sn.
解析 (1)由bn=2nan,得an=eq \f(bn,2n),代入an+1-eq \f(an,2)=eq \f(3,2n+1)得eq \f(bn+1,2n+1)-eq \f(bn,2n+1)=eq \f(3,2n+1),即bn+1-bn=3,
所以数列{bn}是公差为3的等差数列,又a1=a3,所以eq \f(b1,2)=eq \f(b3,8),即eq \f(b1,2)=eq \f(b1+6,8),所以b1=2,
所以bn=b1+3(n-1)=3n-1(n∈N*).
(2)由bn=3n-1,得an=eq \f(bn,2n)=eq \f(3n-1,2n),
所以Sn=eq \f(2,2)+eq \f(5,22)+eq \f(8,23)+…+eq \f(3n-1,2n),
eq \f(1,2)Sn=eq \f(2,22)+eq \f(5,23)+eq \f(8,24)+…+eq \f(3n-1,2n+1),
两式相减得eq \f(1,2)Sn=1+3eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,22)+\f(1,23)+…+\f(1,2n)))-eq \f(3n-1,2n+1)=eq \f(5,2)-eq \f(3n+5,2n+1),
所以Sn=5-eq \f(3n+5,2n)(n∈N*).
[例13] 已知数列{an}满足a1=eq \f(1,2),an+1=eq \f(an,2an+1).
(1)证明数列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(1,an)))是等差数列,并求{an}的通项公式;
(2)若数列{bn}满足bn=eq \f(1,2n·an),求数列{bn}的前n项和Sn.
解析 (1)因为an+1=eq \f(an,2an+1),所以eq \f(1,an+1)-eq \f(1,an)=2,所以eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(1,an)))是等差数列,
所以eq \f(1,an)=eq \f(1,a1)+2(n-1)=2n,即an=eq \f(1,2n).
(2)因为bn=eq \f(2n,2n)=eq \f(n,2n-1),
所以Sn=b1+b2+b3+…+bn=1+eq \f(2,2)+eq \f(3,22)+…+eq \f(n,2n-1),
则eq \f(1,2)Sn=eq \f(1,2)+eq \f(2,22)+eq \f(3,23)+…+eq \f(n,2n),
两式相减得eq \f(1,2)Sn=1+eq \f(1,2)+eq \f(1,22)+eq \f(1,23)+…+eq \f(1,2n-1)-eq \f(n,2n)=2eq \b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,2n)))-eq \f(n,2n),所以Sn=4-eq \f(2+n,2n-1).
[例14] 已知数列{an}的前n项和为Sn,且a1=eq \f(1,2),an+1=eq \f(n+1,2n)an(n∈N*).
(1)证明:数列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(an,n)))是等比数列;
(2)求数列{an}的通项公式与前n项和Sn.
解析 (1)∵a1=eq \f(1,2),an+1=eq \f(n+1,2n)an,当n∈N*时,eq \f(an,n)≠0,又eq \f(a1,1)=eq \f(1,2),eq \f(an+1,n+1)∶eq \f(an,n)=eq \f(1,2)(n∈N*)为常数,
∴eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(an,n)))是以eq \f(1,2)为首项,eq \f(1,2)为公比的等比数列.
(2)由eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(an,n)))是以eq \f(1,2)为首项,eq \f(1,2)为公比的等比数列,得eq \f(an,n)=eq \f(1,2)·eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n-1,∴an=n·eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n.
∴Sn=1·eq \f(1,2)+2·eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))2+3·eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))3+…+n·eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n,
eq \f(1,2)Sn=1·eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))2+2·eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))3+…+(n-1)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n+n·eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n+1,
∴两式相减得eq \f(1,2)Sn=eq \f(1,2)+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))2+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))3+…+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n-n·eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n+1=eq \f(\f(1,2)-\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n+1,1-\f(1,2))-n·eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n+1,
∴Sn=2-eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n-1-n·eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n=2-(n+2)·eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n.
综上,an=n·eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n,Sn=2-(n+2)·eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n.
[例15] (2020·全国Ⅲ)设数列{an}满足a1=3,an+1=3an-4n.
(1)计算a2,a3,猜想{an}的通项公式并加以证明;
(2)求数列{2nan}的前n项和Sn.
解析 (1)a2=5,a3=7.猜想an=2n+1.证明如下:
由已知可得an+1-(2n+3)=3[an-(2n+1)],an-(2n+1)=3[an-1-(2n-1)],…,a2-5=3(a1-3).
因为a1=3,所以an=2n+1.
(2)由(1)得2nan=(2n+1)2n,所以Sn=3×2+5×22+7×23+…+(2n+1)×2n.①
从而2Sn=3×22+5×23+7×24+…+(2n+1)×2n+1.②
①-②得-Sn=3×2+2×22+2×23+…+2×2n-(2n+1)×2n+1,
所以Sn=(2n-1)2n+1+2.
【对点精练】
11.已知数列{an}的各项均为正数,且aeq \\al(2,n)-2nan-(2n+1)=0,n∈N*.
(1)求数列{an}的通项公式;
(2)若bn=2n·an,求数列{bn}的前n项和Tn.
11.解析 (1)由aeq \\al(2,n)-2nan-(2n+1)=0得[an-(2n+1)]·(an+1)=0,所以an=2n+1或an=-1,
又数列{an}的各项均为正数,负值应舍去,所以an=2n+1,n∈N*.
(2)因为bn=2n·an=2n·(2n+1),
所以Tn=2×3+22×5+23×7+…+2n×(2n+1),①
2Tn=22×3+23×5+…+2n×(2n-1)+2n+1×(2n+1),②
由①-②得-Tn=6+2×(22+23+…+2n)-2n+1×(2n+1)
=6+2×eq \f(221-2n-1,1-2)-2n+1×(2n+1)=-2+2n+1(1-2n).
所以Tn=(2n-1)·2n+1+2.
12.数列{an}的前n项和Sn满足:Sn=n2,数列{bn}满足:①b3=eq \f(1,4);②bn>0;③2beq \\al(2,n+1)+bn+1bn-beq \\al(2,n)=0.
(1)求数列{an}与{bn}的通项公式;
(2)设cn=anbn,求数列{cn}的前n项和Tn.
12.解析 (1)当n=1时,a1=S1=1,
当n≥2时,an=Sn-Sn-1=2n-1(n∈N*),
又a1=1满足an=2n-1,∴an=2n-1(n∈N*).
∵2beq \\al(2,n+1)+bn+1bn-beq \\al(2,n)=0,且bn>0,∴2bn+1=bn,∴q=eq \f(1,2),b3=b1q2=eq \f(1,4),
∴b1=1,bn=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n-1(n∈N*).
(2)由(1)得cn=(2n-1)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n-1,
Tn=1+3×eq \f(1,2)+5×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))2+…+(2n-1)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n-1,
eq \f(1,2)Tn=1×eq \f(1,2)+3×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))2+…+(2n-3)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n-1+(2n-1)×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n,
两式相减,得eq \f(1,2)Tn=1+2×eq \f(1,2)+2×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))2+…+2×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n-1-(2n-1)×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n
=1+2eq \b\lc\[\rc\](\a\vs4\al\c1(1-\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n-1))-(2n-1)×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n=3-eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n-1eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)+n)).
∴Tn=6-eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))n-1(2n+3)(n∈N*).
13.已知数列{an},a1=e(e是自然对数的底数),an+1=aeq \\al(3,n)(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=(2n-1)ln an,求数列{bn}的前n项和Tn.
13.解析 (1)由a1=e,an+1=aeq \\al(3,n)知,an>0,所以ln an+1=3ln an,
数列eq \b\lc\{\rc\}(\a\vs4\al\c1(ln an))是以1为首项,3为公比的等比数列,
所以ln an=3n-1,an=e3n-1(n∈N*).
(2)由(1)得bn=(2n-1)ln an=(2n-1)·3n-1,
Tn=1×30+3×31+5×32+…+(2n-1)×3n-1,①
3Tn=1×31+3×32+…+(2n-3)×3n-1+(2n-1)×3n,②
①-②,得-2Tn=1+2(31+32+33+…+3n-1)-(2n-1)×3n
=1+2×eq \f(3-3n,1-3)-(2n-1)×3n=-2(n-1)×3n-2.
所以Tn=(n-1)×3n+1(n∈N*).
14.已知数列{an}满足an≠0,a1=eq \f(1,3),an-an+1=2anan+1,n∈N*.
(1)求证:eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(1,an)))是等差数列,并求出数列{an}的通项公式;
(2)若数列{bn}满足bn=eq \f(2n,an),求数列{bn}的前n项和Tn.
14.解析 (1)由已知可得,eq \f(1,an+1)-eq \f(1,an)=2,∴eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(1,an)))是首项为3,公差为2的等差数列,
∴eq \f(1,an)=3+2(n-1)=2n+1,∴an=eq \f(1,2n+1).
(2)由(1)知bn=(2n+1)2n,
∴Tn=3×2+5×22+7×23+…+(2n-1)2n-1+(2n+1)2n,
2Tn=3×22+5×23+7×24+…+(2n-1)2n+(2n+1)·2n+1,
两式相减得,-Tn=6+2×22+2×23+…+2×2n-(2n+1)2n+1.
=6+eq \f(8-2×2n×2,1-2)-(2n+1)2n+1=-2-(2n-1)2n+1,
∴Tn=2+(2n-1)2n+1.
15.已知数列{an}的前n项和Sn=3n2+8n,{bn}是等差数列,且an=bn+bn+1.
(1)求数列{bn}的通项公式;
(2)令cn=eq \f(an+1n+1,bn+2n),求数列{cn}的前n项和Tn.
15.解析 (1)因为Sn=3n2+8n,所以当n≥2时,an=Sn-Sn-1=3n2+8n-[3(n-1)2+8(n-1)]=6n+5.
当n=1时,a1=S1=11也符合上式,所以an=6n+5,n∈N*.
于是,bn+1+bn=an=6n+5.因为{bn}是等差数列,所以可设bn=kn+t(k,t均为常数),
则有k(n+1)+t+kn+t=6n+5,即2kn+k+2t=6n+5对任意的n∈N*恒成立,
所以eq \b\lc\{\rc\ (\a\vs4\al\c1(2k=6,,k+2t=5,))解得eq \b\lc\{\rc\ (\a\vs4\al\c1(k=3,,t=1,))故bn=3n+1.
(2)因为an=6n+5,bn=3n+1,所以cn=eq \f(an+1n+1,bn+2n)=eq \f(6n+6n+1,3n+3n)=2n×(6n+6).
于是,Tn=12×2+18×22+24×23+…+2n×(6n+6),①
所以2Tn=12×22+18×23+24×24+…+2n×6n+2n+1×(6n+6),②
①-②得,-Tn=24+6(22+23+…+2n)-2n+1×(6n+6)=24+6×eq \f(22-2n×2,1-2)-2n+1×(6n+6)=-2n+1×6n,
故Tn=2n+1×6n=2n+2×3n.
相关试卷
这是一份2022年高考数学二轮专题——圆锥曲线满分模型通关34讲(下册),共283页。
这是一份高考数学二轮复习核心专题讲练:数列第3讲 数列解答题(数列求和) (含解析),共41页。试卷主要包含了倒序相加法,分组求和法,裂项相消法,错位相减法求和,奇偶项讨论求和,特定通项数列求和,插入新数列混合求和等内容,欢迎下载使用。
这是一份高考数学二轮复习核心专题讲练:数列第2讲 数列解答题(数列求通项) (含解析),共29页。试卷主要包含了累加法,累乘法,构造法,倒数法,隔项等差数列,隔项等比数列等内容,欢迎下载使用。