![2023-2024学年天津市重点中学3月份数学质量检测试题第1页](http://img-preview.51jiaoxi.com/2/3/15592801/0-1712622116203/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023-2024学年天津市重点中学3月份数学质量检测试题第2页](http://img-preview.51jiaoxi.com/2/3/15592801/0-1712622116252/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023-2024学年天津市重点中学3月份数学质量检测试题第3页](http://img-preview.51jiaoxi.com/2/3/15592801/0-1712622116270/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2023-2024学年天津市重点中学3月份数学质量检测试题
展开
这是一份2023-2024学年天津市重点中学3月份数学质量检测试题,共18页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.如图,是正方形的外接圆,点是上的一点,则的度数是( )
A.B.
C.D.
2.如果(,均为非零向量),那么下列结论错误的是( )
A.//B.-2=0C.=D.
3.下列说法正确的是( )
A.为了了解长沙市中学生的睡眠情况,应该采用普查的方式
B.某种彩票的中奖机会是1%,则买111张这种彩票一定会中奖
C.若甲组数据的方差s甲2=1.1,乙组数据的方差s乙2=1.2,则乙组数据比甲组数据稳定
D.一组数据1,5,3,2,3,4,8的众数和中位数都是3
4.二次函数在下列( )范围内,y随着x的增大而增大.
A.B.C.D.
5.在实数|﹣3|,﹣2,0,π中,最小的数是( )
A.|﹣3|B.﹣2C.0D.π
6.如图,在大小为的正方形网格中,是相似三角形的是( )
A.甲和乙B.乙和丙C.甲和丙D.乙和丁
7.已知线段MN=4cm,P是线段MN的黄金分割点,MP>NP,那么线段MP的长度等于( )
A.(2+2)cmB.(2﹣2)cmC.(+1)cmD.(﹣1)cm
8.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000,这个数用科学记数法表示( )
A.B.C.D.
9.如图,平行于x轴的直线AC分别交函数 y=x(x≥0)与 y= x(x≥0)的图象于 B,C两点,过点C作y轴的平行线交y=x(x≥0)的图象于点D,直线DE∥AC交 y=x(x≥0)的图象于点E,则=( )
A.B.1C.D.3﹣
10.定点投篮是同学们喜爱的体育项目之一,某位同学投出篮球的飞行路线可以看作是抛物线的一部分,篮球飞行的竖直高度(单位:)与水平距离(单位:)近似满足函数关系(a≠0).下表记录了该同学将篮球投出后的与的三组数据,根据上述函数模型和数据,可推断出篮球飞行到最高点时,水平距离为( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.如图所示,一个质地均匀的小正方体有六个面,小明要给这六个面分别涂上红色、黄 色和蓝色三种颜色.在桌面上掷这个小正方体,要使事件“红色朝上”的概率为,那么需要把__________个面涂为红色.
12.若圆弧所在圆的半径为12,所对的圆心角为60°,则这条弧的长为_____.
13.为庆祝中华人民共和国成立70周年,某校开展以“我和我亲爱的祖国”为主题快闪活动,他们准备从报名参加的3男2女共5名同学中,随机选出2名同学进行领唱,选出的这2名同学刚好是一男一女的概率是:_________.
14.一元二次方程5x2﹣1=4x的一次项系数是______.
15.如图,AB为⊙O的直径,CD是弦,且CD⊥AB于点P,若AB=4,OP=1,则弦CD所对的圆周角等于_____度.
16.已知关于的方程的一个根为6,则实数的值为__________.
17.在一个暗箱里放有m个除颜色外其他完全相同的小球,这m个小球中红球只有4个,每次将球搅匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在25%,那么可以推算m大约是_____.
18.将抛物线向上平移1个单位后,再向左平移2个单位,得一新的抛物线,那么新的抛物线的表达式是__________________________.
三、解答题(共66分)
19.(10分)把0,1,2三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下数字.放回后洗匀,再从中抽取一张卡片,记录下数字.请用列表法或树状图法求两次抽取的卡片上的数字都是偶数的概率.
20.(6分)如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.
(1)求证:EB=DC;
(2)连接DE,若∠BED=50°,求∠ADC的度数.
21.(6分)2019年11月5日,第二届中国国际进口博览会(The 2nd China Internatinal lmprt Exp)在上海国家会展中心开幕.本次进博会将共建开放合作、创新共享的世界经济,见证海纳百川的中国胸襟,诠释兼济天下的责任担当.小滕、小刘两人想到四个国家馆参观:.中国馆;.俄罗斯馆;.法国馆;.沙特阿拉伯馆.他们各自在这四个国家馆中任意选择一个参观,每个国家馆被选择的可能性相同.
(1)求小滕选择.中国馆的概率;
(2)用画树状图或列表的方法,求小滕和小刘恰好选择同一国家馆的概率.
22.(8分)《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步面见木?”用今天的话说,大意是:如图,DEFG是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门H位于GD的中点,南门K位于ED的中点,出东门15步的A处有一树木,求出南门多少步恰好看到位于A处的树木(即点D在直线AC上)?请你计算KC的长为多少步.
23.(8分)已知关于x的方程x2﹣(k+1)x+k2+1=0有两个实数根.
(1)求k的取值范围;
(2)若方程的两实数根分别为x1,x2,且x12+x22=6x1x2﹣15,求k的值.
24.(8分)(1)某学校“智慧方园”数学社团遇到这样一个题目:
如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的长.
经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).
请回答:∠ADB= °,AB= .
(2)请参考以上解决思路,解决问题:
如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.
25.(10分)如图1,已知抛物线y=﹣x2+bx+c交y轴于点A(0,4),交x轴于点B(4,0),点P是抛物线上一动点,试过点P作x轴的垂线1,再过点A作1的垂线,垂足为Q,连接AP.
(1)求抛物线的函数表达式和点C的坐标;
(2)若△AQP∽△AOC,求点P的横坐标;
(3)如图2,当点P位于抛物线的对称轴的右侧时,若将△APQ沿AP对折,点Q的对应点为点Q′,请直接写出当点Q′落在坐标轴上时点P的坐标.
26.(10分)如图已知一次函数y1=2x+5与反比例函数y2=(x<0)相交于点A,B.
(1)求点A,B的坐标;
(2)根据图象,直接写出当y₁≤y₂时x的取值范围.
参考答案
一、选择题(每小题3分,共30分)
1、C
【分析】首先连接OB,OA,由⊙O是正方形ABCD的外接圆,即可求得∠AOB的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得的度数.
【详解】解: 连接OB,OA,
∵⊙O是正方形ABCD的外接圆,
∴∠BOA=90°,
∴=∠BOA=45°.
故选:C.
此题考查了圆周角定理与圆的内接多边形、正方形的性质等知识.此题难度不大,注意准确作出辅助线,注意数形结合思想的应用.
2、B
【解析】试题解析:向量最后的差应该还是向量. 故错误.
故选B.
3、D
【分析】根据抽样调查、概率、方差、中位数与众数的概念判断即可.
【详解】A、为了解长沙市中学生的睡眠情况,应该采用抽样调查的方式,不符合题意;
B、某种彩票的中奖机会是1%,则买111张这种彩票可能会中奖,不符合题意;
C、若甲组数据的方差s甲2=1.1,乙组数据的方差s乙2=1.2,则甲组数据比乙组数据稳定,不符合题意;
D、一组数据1,5,3,2,3,4,8的众数和中位数都是3,符合题意;
故选:D.
本题考查统计的相关概念,关键在于熟记概念.
4、C
【分析】先求函数的对称轴,再根据开口方向确定x的取值范围.
【详解】,
∵图像的对称轴为x=1,a=-1,
∴当x时,y随着x的增大而增大,
故选:C.
此题考查二次函数的性质,当a时,对称轴左减右增.
5、B
【分析】直接利用利用绝对值的性质化简,进而比较大小得出答案.
【详解】在实数|-3|,-1,0,π中,
|-3|=3,则-1<0<|-3|<π,
故最小的数是:-1.
故选B.
此题主要考查了实数大小比较以及绝对值,正确掌握实数比较大小的方法是解题关键.
6、C
【分析】分别求得四个三角形三边的长,再根据三角形三边分别成比例的两三角形相似来判定.
【详解】∵甲中的三角形的三边分别是:,2,;
乙中的三角形的三边分别是:,,;
丙中的三角形的三边分别是:,,;
丁中的三角形的三边分别是:,,;
只有甲与丙中的三角形的三边成比例:,
∴甲与丙相似.
故选:C.
本题主要考查了相似三角形的判定方法、勾股定理等,熟记定理的内容是解题的关键.
7、B
【解析】根据黄金分割的定义进行作答.
【详解】由黄金分割的定义知,,又MN=4,所以,MP=2 2. 所以答案选B.
本题考查了黄金分割的定义,熟练掌握黄金分割的定义是本题解题关键.
8、C
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】解:将4400000000用科学记数法表示为4.4×109.
故选C.
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
9、D
【分析】设点A的纵坐标为b, 可得点B的坐标为(,b), 同理可得点C的坐标为(b,b),
D点坐标(,3b),E点坐标(,3b),可得的值.
【详解】解:设点A的纵坐标为b, 因为点B在的图象上, 所以其横坐标满足=b, 根据图象可知点B的坐标为(,b), 同理可得点C的坐标为(,b),
所以点D的横坐标为,因为点D在的图象上, 故可得
y==3b,所以点E的纵坐标为3b,
因为点E在的图象上, =3b,
因为点E在第一象限, 可得E点坐标为(,3b),
故DE==,AB=
所以=
故选D.
本题主要考查二次函数的图象与性质.
10、C
【分析】用待定系数法可求二次函数的表达式,从而可得出答案.
【详解】将代入中得
解得
∴
∵
∴当时,
故选C
本题主要考查待定系数法求二次函数的解析式及二次函数的最大值,掌握二次函数的图象和性质是解题的关键.
二、填空题(每小题3分,共24分)
11、
【分析】根据题意可知共有6种等可能结果,所以要使事件“红色朝上”的概率为,则需要有2种符合题意的结果,从而求解.
【详解】解:∵一个质地均匀的小正方体有六个面
∴在桌面上掷这个小正方体,共有6种等可能结果,其中把2个面涂为红色,则使事件“红色朝上”的概率为
故答案为:2
本题考查简单的概率计算,理解概率的概念并根据概率的计算公式正确计算是本题的解题关键.
12、4π
【分析】直接利用弧长公式计算即可求解.
【详解】l==4π,
故答案为:4π.
本题考查弧长计算公式,解题的关键是掌握:弧长l=(n是弧所对应的圆心角度数)
13、
【分析】先画出树状图求出所有可能出现的结果数,再找出选出的2名同学刚好是一男一女的结果数,然后利用概率公式求解即可.
【详解】解:设报名的3名男生分别为A、B、C,2名女生分别为M、N,则所有可能出现的结果如图所示:
由图可知,共有20种等可能的结果,其中选出的2名同学刚好是一男一女的结果有12种,
所以选出的2名同学刚好是一男一女的概率=.
故答案为:.
本题考查了求两次事件的概率,属于常考题型,熟练掌握画树状图或列表的方法是解题的关键.
14、-4
【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0).在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.
【详解】解:∵5x2﹣1=4x,
方程整理得:5x2﹣4x﹣1=0,
则一次项系数是﹣4,
故答案为:﹣4
本题考查了一元二次方程的一般形式,解答本题要通过移项,转化为一般形式,注意移项时符号的变化.
15、60或1.
【分析】先确定弦CD所对的圆周角∠CBD和∠CAD两个,再利用圆的相关性质及菱形的判定证四边形ODBC是菱形,推出,根据圆内接四边形对角互补即可分别求出和的度数.
【详解】如图,连接OC,OD,BC,BD,AC,AD,
∵AB为⊙O的直径,AB=4,
∴OB=2,
又∵OP=1,
∴BP=1,
∵CD⊥AB,
∴CD垂直平分OB,
∴CO=CB,DO=DB,
又OC=OD,
∴OC=CB=DB=OD,
∴四边形ODBC是菱形,
∴∠COD=∠CBD,
∵∠COD=2∠CAD,
∴∠CBD=2∠CAD,
又∵四边形ADBC是圆内接四边形,
∴∠CAD+∠CBD=180°,
∴∠CAD=60°,∠CBD=1°,
∵弦CD所对的圆周角有∠CAD和∠CBD两个,
故答案为:60或1.
本题考查了圆周角的度数问题,掌握圆的有关性质、菱形的性质以及判定定理是解题的关键.
16、1
【分析】将一元二次方程的根代入即可求出k的值.
【详解】解:∵关于的方程的一个根为6
∴
解得:k=1
故答案为:1.
此题考查的是已知一元二次方程的根,求方程中的参数,掌握方程的解的定义是解决此题的关键.
17、1
【分析】由于摸到红球的频率稳定在25%,由此可以确定摸到红球的概率为25%,而m个小球中红球只有4个,由此即可求出m.
【详解】∵摸到红球的频率稳定在25%,
∴摸到红球的概率为25%,
而m个小球中红球只有4个,
∴推算m大约是4÷25%=1.
故答案为:1.
本题考查了利用频率估计概率,其中解题时首先通过实验得到事件的频率,然后利用频率估计概率即可解决问题.
18、y=(x+2)2-1
【分析】根据函数图象的平移规律解答即可得到答案
【详解】由题意得:平移后的函数解析式是,
故答案为:.
此题考查抛物线的平移规律:左加右减,上加下减,正确掌握平移的规律并运用解题是关键.
三、解答题(共66分)
19、见解析,.
【分析】画树状图展示所有9种等可能的结果数,找出两次抽取的卡片上的数字都是偶数的结果数,然后根据概率公式求解.
【详解】解:画树状图为:
共有9种等可能的结果数,其中两次抽取的卡片上的数字都是偶数的结果数为4,
所以两次抽取的卡片上的数字都是偶数的概率=.
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
20、(1)证明见解析;(2)110°
【分析】(1)根据等边三角形的性质可得∠BAC=60°,AB=AC,由旋转的性质可得∠DAE=60°,AE=AD,利用SAS即可证出≌,从而证出结论;
(2)根据等边三角形的判定定理可得为等边三角形,从而得出∠AED=60°,由(1)中全等可得∠AEB=∠ADC,求出∠AEB即可求出结论.
【详解】解:(1)∵是等边三角形,
∴∠BAC=60°,AB=AC.
∵线段AD绕点A顺时针旋转60°,得到线段AE,
∴∠DAE=60°,AE=AD.
∴∠BAD+∠EAB=∠BAD+∠DAC.
∴∠EAB=∠DAC.
在和中,
∵,
∴≌.
∴EB=DC.
(2)如图,
由(1)得∠DAE=60°,AE=AD,
∴为等边三角形.
∴∠AED=60°,
由(1)得≌,
∴∠AEB=∠ADC.
∵∠BED=50°,
∴∠AEB=∠AED+∠BED=110°,
∴∠ADC=110°.
此题考查的是等边三角形的判定及性质、全等三角形的判定及性质和旋转的性质,掌握等边三角形的判定及性质、全等三角形的判定及性质和旋转的性质是解决此题的关键.
21、(1);(2).
【分析】(1)由于每个国家馆被选择的可能性相同,即可得到中国馆被选中的概率为;
(2)画树状图列出所有可能性,即可求出概率.
【详解】.解:(1)在这四个国家馆中任选一个参观,每个国家馆被选择的可能性相同
∴在这四个国家馆中小滕选择.中国馆的概率是;
(2)画树状图分析如下:
共有16种等可能的结果,小滕和小刘恰好选择同一国家馆参观的结果有4种
∴小滕和小刘恰好选择同一国家馆参观的概率.
本题考查了树状图求概率,属于常考题型.
22、
【分析】根据平行证出△CDK∽△DAH,利用相似比即可得出答案.
【详解】解:DH=100,DK=100,AH=15,
∵AH∥DK,
∴∠CDK=∠A,
而∠CKD=∠AHD,
∴△CDK∽△DAH,
∴,即,
∴CK=
答:KC的长为步.
本题主要考查的是相似三角形的应用,难度适中,解题关键是找出相似三角形.
23、(1)k≥;(2)1
【分析】(1)根据判别式与根的个数之间的关系,列不等式计算即可;
(2)根据一元二次方程根与系数间的关系表示出,,再由代入进行计算即可.
【详解】解:(1)由题意,得△=[﹣(k+1)]2﹣1(k2+1)=2k﹣3≥0,
解得,
∴k的取值范围为k≥.
(2)∵由根与系数的关系,得x1+x2=k+1,x1•x2=k2+1 ,
∵x12+x22=6x1x2﹣15,
∴(x1+x2)2﹣8x1x2+15=0,
∴k2﹣2k﹣8=0,解得:k1=1,k2=﹣2 ,
又∵k≥,
∴k=1.
本题考查了一元二次方程根的个数与判别式之间的关系,根与系数的关系,熟知以上运算是解题的关键.
24、(1)75;4;(2)CD=4.
【分析】(1)根据平行线的性质可得出∠ADB=∠OAC=75°,结合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性质可求出OD的值,进而可得出AD的值,由三角形内角和定理可得出∠ABD=75°=∠ADB,由等角对等边可得出AB=AD=4,此题得解;
(2)过点B作BE∥AD交AC于点E,同(1)可得出AE=4,在Rt△AEB中,利用勾股定理可求出BE的长度,再在Rt△CAD中,利用勾股定理可求出DC的长,此题得解.
【详解】解:(1)∵BD∥AC,
∴∠ADB=∠OAC=75°.
∵∠BOD=∠COA,
∴△BOD∽△COA,
∴.
又∵AO=3,
∴OD=AO=,
∴AD=AO+OD=4.
∵∠BAD=30°,∠ADB=75°,
∴∠ABD=180°-∠BAD-∠ADB=75°=∠ADB,
∴AB=AD=4.
(2)过点B作BE∥AD交AC于点E,如图所示.
∵AC⊥AD,BE∥AD,
∴∠DAC=∠BEA=90°.
∵∠AOD=∠EOB,
∴△AOD∽△EOB,
∴.
∵BO:OD=1:3,
∴.
∵AO=3,
∴EO=,
∴AE=4.
∵∠ABC=∠ACB=75°,
∴∠BAC=30°,AB=AC,
∴AB=2BE.
在Rt△AEB中,BE2+AE2=AB2,即(4)2+BE2=(2BE)2,
解得:BE=4,
∴AB=AC=8,AD=1.
在Rt△CAD中,AC2+AD2=CD2,即82+12=CD2,
解得:CD=4.
本题考查了相似三角形的性质、等腰三角形的判定与性质、勾股定理以及平行线的性质,解题的关键是:(1)利用相似三角形的性质求出OD的值;(2)利用勾股定理求出BE、CD的长度.
25、 (1)y=﹣x2+3x+4;(﹣1,0);(2)P的横坐标为或.(3)点P的坐标为(4,0)或(5,﹣6)或(2,6).
【分析】(1)利用待定系数法求抛物线解析式,然后利用抛物线解析式得到一元二次方程,通过解一元二次方程得到C点坐标;
(2)利用△AQP∽△AOC得到AQ=4PQ,设P(m,﹣m2+3m+4),所以m=4|4﹣(﹣m2+3m+4|,然后解方程4(m2﹣3m)=m和方程4(m2﹣3m)=﹣m得P点坐标;
(3)设P(m,﹣m2+3m+4)(m>),当点Q′落在x轴上,延长QP交x轴于H,如图2,则PQ=m2﹣3m,证明Rt△AOQ′∽Rt△Q′HP,利用相似比得到Q′B=4m﹣12,则OQ′=12﹣3m,在Rt△AOQ′中,利用勾股定理得到方程42+(12﹣3m)2=m2,然后解方程求出m得到此时P点坐标;当点Q′落在y轴上,易得点A、Q′、P、Q所组成的四边形为正方形,利用PQ=PQ′得到|m2﹣3m|=m,然后解方程m2﹣3m=m和方程m2﹣3m=﹣m得此时P点坐标.
【详解】解:(1)把A(0,4),B(4,0)分别代入y=﹣x2+bx+c得,解得,
∴抛物线解析式为y=﹣x2+3x+4,
当y=0时,﹣x2+3x+4=0,解得x1=﹣1,x2=4,
∴C(﹣1,0);
故答案为y=﹣x2+3x+4;(﹣1,0);
(2)∵△AQP∽△AOC,
∴,
∴,即AQ=4PQ,
设P(m,﹣m2+3m+4),
∴m=4|4﹣(﹣m2+3m+4|,即4|m2﹣3m|=m,
解方程4(m2﹣3m)=m得m1=0(舍去),m2=,此时P点横坐标为;
解方程4(m2﹣3m)=﹣m得m1=0(舍去),m2=,此时P点坐标为;
综上所述,点P的坐标为(,)或(,);
(3)设,
当点Q′落在x轴上,延长QP交x轴于H,如图2,
则PQ=4﹣(﹣m2+3m+4)=m2﹣3m,
∵△APQ沿AP对折,点Q的对应点为点Q',
∴∠AQ′P=∠AQP=90°,AQ′=AQ=m,PQ′=PQ=m2﹣3m,
∵∠AQ′O=∠Q′PH,
∴Rt△AOQ′∽Rt△Q′HP,
∴,即,解得Q′H=4m﹣12,
∴OQ′=m﹣(4m﹣12)=12﹣3m,
在Rt△AOQ′中,42+(12﹣3m)2=m2,
整理得m2﹣9m+20=0,解得m1=4,m2=5,此时P点坐标为(4,0)或(5,﹣6);
当点Q′落在y轴上,则点A、Q′、P、Q所组成的四边形为正方形,
∴PQ=AQ′,
即|m2﹣3m|=m,
解方程m2﹣3m=m得m1=0(舍去),m2=4,此时P点坐标为(4,0);
解方程m2﹣3m=﹣m得m1=0(舍去),m2=2,此时P点坐标为(2,6),
综上所述,点P的坐标为(4,0)或(5,﹣6)或(2,6)
本题考查了待定系数法,相似三角形的性质,解一元二次方程,三角形折叠,题目综合性较强,解决本题的关键是:①熟练掌握待定系数法求函数解析式;②能够熟练掌握相似三角形的判定和性质;③能够熟练掌握一元二次方程的解法;④理解折叠的性质.
26、(1)A点的坐标为(﹣,2),B点的坐标为(﹣1,3);(2)x≤﹣或﹣1≤x<1.
【分析】(1)联立两函数解析式,解方程组即可得到交点坐标;
(2)写出一次函数图象在反比例函数图象下方的x的取值范围即可.
【详解】解:(1)联立两函数解析式得,,
解得或,
所以A点的坐标为(﹣,2),B点的坐标为(﹣1,3);
(2)根据图象可得,当y₁≤y₂时x的取值范围是x≤﹣或﹣1≤x<1.
本题考查了反比例函数与一次函数图象的交点问题,根据解析式列出方程组求出交点坐标是解题的关键.
x (单位:m)
y (单位:m)
3.05
相关试卷
这是一份辽源市重点中学2023-2024学年数学九上期末质量检测模拟试题含答案,共7页。试卷主要包含了如图,斜面AC的坡度,反比例函数y=﹣的图象在等内容,欢迎下载使用。
这是一份2023-2024学年延边市重点中学数学九上期末质量检测模拟试题含答案,共8页。试卷主要包含了某同学用一根长为,计算的结果是等内容,欢迎下载使用。
这是一份2023-2024学年永州市重点中学数学九上期末质量检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,方程的解的个数为,若均为锐角,且,则.等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/ed4b79351ae3a39596034d4bbb94b742.jpg)