年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    中考强化练习湖南省娄底市中考数学高频模拟汇总 卷(Ⅱ)(含详解)

    中考强化练习湖南省娄底市中考数学高频模拟汇总 卷(Ⅱ)(含详解)第1页
    中考强化练习湖南省娄底市中考数学高频模拟汇总 卷(Ⅱ)(含详解)第2页
    中考强化练习湖南省娄底市中考数学高频模拟汇总 卷(Ⅱ)(含详解)第3页
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考强化练习湖南省娄底市中考数学高频模拟汇总 卷(Ⅱ)(含详解)

    展开

    这是一份中考强化练习湖南省娄底市中考数学高频模拟汇总 卷(Ⅱ)(含详解),共30页。试卷主要包含了下列运算正确的是,和按如图所示的位置摆放,顶点B,抛物线的顶点为等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,在梯形中,ADBC,过对角线交点的直线与两底分别交于点,下列结论中,错误的是( )
    A.B.C.D.
    2、下面四个立体图形的展开图中,是圆锥展开图的是( ).
    A.B.C.D.
    3、若和是同类项,且它们的和为0,则mn的值是( )
    A.-4B.-2C.2D.4
    4、如图所示,一座抛物线形的拱桥在正常水位时,水面AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )
    A.4米B.10米C.4米D.12米
    5、下列运算正确的是( )
    A.B.C.D.
    6、在如图的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和可能是( ).
    A.28B.54C.65D.75
    7、和按如图所示的位置摆放,顶点B、C、D在同一直线上,,,.将沿着翻折,得到,将沿着翻折,得,点B、D的对应点、与点C恰好在同一直线上,若,,则的长度为( ).
    A.7B.6C.5D.4
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    8、抛物线的顶点为( )
    A.B.C.D.
    9、如图,已知与都是以A为直角顶点的等腰直角三角形,绕顶点A旋转,连接.以下三个结论:①;②;③;其中结论正确的个数是( )
    A.1B.2C.3D.0
    10、下列函数中,随的增大而减小的是( )
    A.B.
    C.D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、当我们利用两种不同的方法计算同一图形的面积时,可以得到一个等式.例如:由图1可得等式:.
    (1)由图2可得等式:________;
    (2)利用(1)中所得到的结论,解决下面的问题:已知且,则_______.
    2、如图,E是正方形ABCD的对角线BD上一点,连接CE,过点E作,垂足为点F.若,,则正方形ABCD的面积为______.
    3、如图是两个全等的三角形,图中字母表示三角形的边长,则∠的度数为________º.
    4、如图,△ABC,△FGH中,D,E两点分别在AB,AC上,F点在DE上,G,H两点在BC上,且DE∥BC,FG∥AB,FH∥AC,若BG:GH:HC=4:6:5,△FGH的面积是4,则△ADE的面积是______.
    5、若,则的值是______.
    三、解答题(5小题,每小题10分,共计50分)
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    1、解方程:.
    2、在平面直角坐标系xOy中,已知点A(1,0)和点B(5,0).对于线段AB和直线AB外的一点C,给出如下定义:点C到线段AB两个端点的连线所构成的夹角∠ACB叫做线段AB关于点C的可视角,其中点C叫做线段AB的可视点.
    (1)在点D(-2,2)、E(1,4)、F(3,-2)中,使得线段AB的可视角为45°的可视点是 ;
    (2)⊙P为经过A,B两点的圆,点M是⊙P上线段AB的一个可视点.
    ① 当AB为⊙P的直径时,线段AB的可视角∠AMB为 度;
    ② 当⊙P的半径为4时,线段AB的可视角∠AMB为 度;
    (3)已知点N为y轴上的一个动点,当线段AB的可视角∠ANB最大时,求点N的坐标.
    3、数学课上,王老师准备了若干个如图1的三种纸片,A种纸片是边长为a的正方形,B种纸片是边长为b的正方形,C种纸片是长为b,宽为a的长方形.并用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形.
    (1)请用两种不同的方法求图2大正方形的面积:
    方法1: ;
    方法2: ;
    (2)观察图2,请你写出代数式:(a+b)2,a2+b2,ab之间的等量关系 ;
    (3)根据(2)题中的等量关系,解决如下问题:
    ①已知:a+b=5,(a﹣b)2=13,求ab的值;
    ②已知(2021﹣a)2+(a﹣2020)2=5,求(2021﹣a)(a﹣2020)的值.
    4、如图,直线l:与y轴交于点G,直线l上有一动点P,过点P作y轴的平行线PE,过点G作x轴的平行线GE,它们相交于点E.将△PGE沿直线l翻折得到△PGE′,点E的对应点为E′.
    (1)如图1,请利用无刻度的直尺和圆规在图1中作出点E的对应点E′;
    (2)如图2,当点E的对应点E′落在x轴上时,求点P的坐标;
    (3)如图3,直线l上有A,B两点,坐标分别为(-2,-6),(4,6),当点P从点A运动到点B的过程中,点E′也随之运动,请直接写出点E′的运动路径长为____________.
    5、如图,在平面直角坐标系中,在第二象限,且,,.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (1)作出关于轴对称的,并写出,的坐标;
    (2)在轴上求作一点,使得最小,并求出最小值及点坐标.
    -参考答案-
    一、单选题
    1、B
    【分析】
    根据ADBC,可得△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,再利用相似三角形的性质逐项判断即可求解.
    【详解】
    解:∵ADBC,
    ∴△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,
    ∴,故A正确,不符合题意;
    ∵ADBC,
    ∴△DOE∽△BOF,
    ∴,
    ∴,
    ∴,故B错误,符合题意;
    ∵ADBC,
    ∴△AOD∽△COB,
    ∴,
    ∴,故C正确,不符合题意;
    ∴ ,
    ∴,故D正确,不符合题意;
    故选:B
    【点睛】
    本题主要考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质定理是解题的关键.
    2、B
    【分析】
    由棱柱,圆锥,圆柱的展开图的特点,特别是底面与侧面的特点,逐一分析即可.
    【详解】
    解:选项A是四棱柱的展开图,故A不符合题意;
    选项B是圆锥的展开图,故B符合题意;
    选项C是三棱柱的展开图,故C不符合题意;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    选项D是圆柱的展开图,故D不符合题意;
    故选B
    【点睛】
    本题考查的是简单立体图形的展开图,熟悉常见的基本的立体图形及其展开图是解本题的关键.
    3、B
    【分析】
    根据同类项的定义得到2+m=3,n-1=-3, 求出m、n的值代入计算即可.
    【详解】
    解:∵和是同类项,且它们的和为0,
    ∴2+m=3,n-1=-3,
    解得m=1,n=-2,
    ∴mn=-2,
    故选:B.
    【点睛】
    此题考查了同类项的定义:含有相同的字母,且相同字母的指数分别相等,熟记定义是解题的关键.
    4、B
    【分析】
    以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax²,由此可得A(﹣10,﹣4),B(10,﹣4),即可求函数解析式为y=﹣ x²,再将y=﹣1代入解析式,求出C、D点的横坐标即可求CD的长.
    【详解】
    解:以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,
    设抛物线的解析式为y=ax2,
    ∵O点到水面AB的距离为4米,
    ∴A、B点的纵坐标为﹣4,
    ∵水面AB宽为20米,
    ∴A(﹣10,﹣4),B(10,﹣4),
    将A代入y=ax2,
    ﹣4=100a,
    ∴a=﹣,
    ∴y=﹣x2,
    ∵水位上升3米就达到警戒水位CD,
    ∴C点的纵坐标为﹣1,
    ∴﹣1=﹣x2,
    ∴x=±5,
    ∴CD=10,
    故选:B.
    【点睛】
    本题考查二次函数在实际问题中的应用,找对位置建立坐标系再求解二次函数是关键.
    5、C
    【分析】
    根据合并同类项法则解答即可.
    【详解】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    解:A、3x和4y不是同类项,不能合并,故A选项错误;
    B、,故B选项错误;
    C、,故C选项正确;
    D、,故D选项错误,
    故选:C.
    【点睛】
    本题考查合并同类项,熟练掌握合并同类项法则是解答的关键.
    6、B
    【分析】
    一竖列上相邻的三个数的关系是:上面的数总是比下面的数小7.可设中间的数是x,则上面的数是x-7,下面的数是x+7.则这三个数的和是3x,让选项等于3x列方程.解方程即可
    【详解】
    设中间的数是x,则上面的数是x-7,下面的数是x+7,
    则这三个数的和是(x-7)+x+(x+7)=3x,
    ∴3x=28,
    解得:不是整数,
    故选项A不是;
    ∴3x=54,
    解得: ,
    中间的数是18,则上面的数是11,下面的数是28,
    故选项B是;
    ∴3x=65,
    解得: 不是整数,
    故选项C不是;
    ∴3x=75,
    解得:,
    中间的数是25,则上面的数是18,下面的数是32,
    日历中没有32,
    故选项D不是;
    所以这三个数的和可能为54,
    故选B.
    【点睛】
    本题考查了一元一次方程的应用,解决的关键是观察图形找出数之间的关系,从而找到三个数的和的特点.
    7、A
    【分析】
    由折叠的性质得,,故,,推出,由,推出,根据AAS证明,即可得,,设,则,由勾股定理即可求出、,由计算即可得出答案.
    【详解】
    由折叠的性质得,,
    ∴,,
    ∴,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∵,
    ∴,
    ∴,
    在与中,

    ∴,
    ∴,,
    设,则,
    ∴,
    解得:,
    ∴,,
    ∴.
    故选:A.
    【点睛】
    本题考查折叠的性质以及全等三角形的判定与性质,掌握全等三角形的判定定理和性质是解题的关键.
    8、B
    【分析】
    根据抛物线的顶点式y=a(x-h)2+k可得顶点坐标是(h,k).
    【详解】
    解:∵y=2(x-1)2+3,
    ∴抛物线的顶点坐标为(1,3),
    故选:B.
    【点睛】
    本题考查二次函数的性质,解题的关键是熟练掌握抛物线的顶点式y=a(x-h)2+k,顶点坐标是(h,k).
    9、B
    【分析】
    证明△BAD≌△CAE,由此判断①正确;由全等的性质得到∠ABD=∠ACE,求出∠ACE+∠DBC=45°,依据,推出,故判断②错误;设BD交CE于M,根据∠ACE+∠DBC=45°,∠ACB=45°,求出∠BMC=90°,即可判断③正确.
    【详解】
    解:∵与都是以A为直角顶点的等腰直角三角形,
    ∴AB=AC,AD=AE,∠BAC=∠DAE=90°,
    ∴∠BAD=∠CAE,
    ∴△BAD≌△CAE,
    ∴,故①正确;
    ∵△BAD≌△CAE,
    ∴∠ABD=∠ACE,
    ∵∠ABD+∠DBC=45°,
    ∴∠ACE+∠DBC=45°,
    ∵,
    ∴,
    ∴不成立,故②错误;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    设BD交CE于M,
    ∵∠ACE+∠DBC=45°,∠ACB=45°,
    ∴∠BMC=90°,
    ∴,故③正确,
    故选:B.
    【点睛】
    此题考查了三角形全等的判定及性质,等腰直角三角形的性质,熟记三角形全等的判定定理及性质定理是解题的关键.
    10、C
    【分析】
    根据各个选项中的函数解析式,可以判断出y随x的增大如何变化,从而可以解答本题.
    【详解】
    解:A.在中,y随x的增大而增大,故选项A不符合题意;
    B.在中,y随x的增大与增大,不合题意;
    C.在中,当x>0时,y随x的增大而减小,符合题意;
    D.在,x>2时,y随x的增大而增大,故选项D不符合题意;
    故选:C.
    【点睛】
    本题考查了正比例函数的性质、二次函数的性质、反比例函数的性质,正确掌握相关函数增减性是解题关键.
    二、填空题
    1、 2
    【解析】
    【分析】
    (1)方法一:直接利用正方形的面积公式可求出图形的面积;方法二:利用图形的面积等于9部分的面积之和,根据方法一和方法二的结果相等建立等式即可得;
    (2)先将已知等式利用完全平方公式、整式的乘法法则变形为,再利用(1)的结论可得,从而可得,由此即可得出答案.
    【详解】
    解:(1)方法一:图形的面积为,
    方法二:图形的面积为,
    则由图2可得等式为,
    故答案为:;
    (2),


    利用(1)的结论得:,

    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ,即,


    故答案为:2.
    【点睛】
    本题考查了完全平方公式与图形面积、整式乘法的应用,熟练掌握完全平方公式和整式的运算法则是解题关键.
    2、49
    【解析】
    【分析】
    延长FE交AB于点M,则,,由正方形的性质得,推出是等腰直角三角形,得出,由勾股定理求出CM,故得出BC,由正方形的面积公式即可得出答案.
    【详解】
    如图,延长FE交AB于点M,则,,
    ∵四边形ABCD是正方形,
    ∴,
    ∴是等腰直角三角形,
    ∴,
    在中,,
    ∴,
    ∴.
    故答案为:49.
    【点睛】
    本题考查正方形的性质以及勾股定理,掌握正方形的性质是解题的关键.
    3、70
    【解析】
    【分析】
    如图(见解析),先根据三角形的内角和定理可得,再根据全等三角形的性质即可得.
    【详解】
    解:如图,由三角形的内角和定理得:,
    图中的两个三角形是全等三角形,在它们中,边长为和的两边的夹角分别为和,

    故答案为:70.
    【点睛】
    本题考查了三角形的内角和定理、全等三角形的性质,熟练掌握全等三角形的性质是解题关键.
    4、9
    【解析】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【分析】
    只要证明△ADE∽△FGH,可得,由此即可解决问题.
    【详解】
    解:∵BG:GH:HC=4:6:5,可以假设BG=4k,GH=6k,HC=5k,
    ∵DE∥BC,FG∥AB,FH∥AC,
    ∴四边形BGFD是平行四边形,四边形EFHC是平行四边形,
    ∴DF=BG=4k,EF=HC=5k,DE=DF+EF=9k,∠FGH=∠B=∠ADE,∠FHG=∠C=∠AED,
    ∴△ADE∽△FGH,
    ∴.
    ∵△FGH的面积是4,
    ∴△ADE的面积是9,
    故答案为:9.
    【点睛】
    本题考查了相似三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.
    5、-2
    【解析】
    【分析】
    将的值代入原式=计算可得.
    【详解】
    解:=
    将代入,原式==-2
    故答案为:-2
    【点睛】
    本题主要考查代数式求值,解题的关键是熟练掌握整体代入思想的运用.
    三、解答题
    1、
    【分析】
    去分母,移项合并同类项,系数化为1即可求解.
    【详解】

    去分母得:.
    去括号得:
    移项合并同类项得:.
    系数化为1得:.
    【点睛】
    本题考查一元一次方程的解法,先去分母、移项合并、化系数为1.属于基础题.
    2、
    (1)点E
    (2)① 90;② 30或150
    (3)N(0,)或(0,- )
    【分析】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (1)AE、BE、AB满足勾股定理,且AE=AB,可知为等腰直角三角形,则∠AEB=45°,故E点可使线段AB的可视角为45°.
    (2)①由半径所对的圆周角为90°即可得出∠AMB为90°.
    ②连接AP、BP,即可得出为等边三角形,由圆周角定理即可求得∠AMB为30°或150°.
    (3)以AB为弦作圆M且过点N,由圆周角定理可得出当圆心角AMB最大时,圆周角ANB最大,由直线与圆的位置关系得出当y轴与圆M相切时圆心角AMB最大,进而可求得N点坐标.
    (1)
    连接AE,BE
    ∵AE=4,AB=4,AE⊥AB
    ∴为等腰直角三角形
    ∴∠AEB=45°.
    故使得线段AB的可视角为45°的可视点是点E.
    (2)
    ①有题意可知,此时AB为⊙P直径
    由半径所对的圆周角为90°可知∠AMB为90°
    ②当⊙P的半径为4时,AB为⊙P一条弦,连接AP,BP
    ∵BP=AP=4,AB=4
    ∴为等边三角形
    ∴∠APB=60°
    当点M在圆心一侧由圆周角定理知∠AMB=
    当点M不在圆心一侧由内切四边形性质可知∠AMB=180°-30°=150°
    (3)
    (3)解: ∵过不在同一条直线上的三点确定一个圆,
    ∴A、B、N三点共圆,且过A、B两点的圆有无数个,圆心在直线x=3上.
    即:点N的位置为过A、B两点的圆与y轴的交点.
    设过A、B两点的圆为⊙M,半径为r.
    当r3时,y轴与⊙M1交于两点,此时y轴与⊙M1相交,交点设为N1、N2.
    连接AM、BM、AN、BN、AM1、BM1、AN1、BN1.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    此时,∠ANB、∠AMB分别为⊙M中弧AB所对的圆周角和圆心角;
    ∠AN1B、∠AM1B分别为⊙M1中弧AB所对的圆周角和圆心角.
    ∵∠1=∠M1AM+∠AM1M,
    ∠2=∠M1BM+∠BM1M,
    ∴∠1+∠2=∠M1AM+∠AM1M+∠BM1M+∠M1BM,
    即∠AMB=∠M1AM+∠AM1B+∠M1BM
    ∴∠AMB>∠AM1B
    ∴∠ANB>∠AN1B
    ∵∠AN1B=∠AN2B
    ∴∠ANB>∠AN2B
    ∴当y轴与⊙M相切于点N时,∠ANB的值最大.
    在Rt△AMC中,AM=r=3,AC=2
    ∴MC=
    ∵MN⊥y轴,MC⊥AB,
    ∴四边形OCMN为矩形.
    ∴ON=MC=
    ∴N(0,)
    同理,当点N在y轴负半轴时,坐标为(0,- )
    综述所述,N(0,)或(0,-).
    【点睛】
    本题考查了圆周角定理,将可视角的定义转化为圆内弦AB的圆周角是解题的关键,再结合图象计算即可.
    3、
    (1);
    (2)
    (3)①;②-2
    【分析】
    (1)方法1,由大正方形的边长为(a+b),直接求面积;方法2,大正方形是由2个长方形,2个小正方形拼成,分别求出各个小长方形、正方形的面积再求和即可;
    (2)由(1)直接可得关系式;
    (3)①由(a-b)2=a2+b2-2ab=13,(a+b)2=a2+b2+2ab=25,两式子直接作差即可求解;②设2021-a=x,a-2020=y,可得x+y=1,再由已知可得x2+y2=5,先求出xy=-2,再求(2021-a)(a-2020)=-2即可.
    (1)
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    方法一:∵大正方形的边长为(a+b),
    ∴S=(a+b)2;
    方法二:大正方形是由2个长方形,2个小正方形拼成,
    ∴S=b2+ab+ab+a2=a2+b2+2ab;
    故答案为:(a+b)2,a2+b2+2ab;
    (2)
    由(1)可得(a+b)2=a2+b2+2ab;
    故答案为:(a+b)2=a2+b2+2ab;
    (3)
    ①∵(a-b)2=a2+b2-2ab=13①,
    (a+b)2=a2+b2+2ab=25②,
    由①-②得,-4ab=-12,
    解得:ab=3;
    ②设2021-a=x,a-2020=y,
    ∴x+y=1,
    ∵(2021-a)2+(a-2020)2=5,
    ∴x2+y2=5,
    ∵(x+y)2=x2+2xy+y2=1,
    ∴2xy=1-(x2+y2)=1-5=-4,
    解得:xy=-2,
    ∴(2021-a)(a-2020)=-2.
    【点睛】
    本题考查完全平方公式的几何背景,熟练掌握正方形、长方形面积的求法,灵活应用完全平方公式的变形是解题的关键.
    4、
    (1)见解析
    (2)
    (3)6
    【分析】
    (1)作出过点E的l的垂线即可解决;
    (2)设直线l交x轴于点D,则由直线解析式可求得点D、点G的坐标,从而可得OD的长.由对称性及平行可得,设点P的坐标为(a,2a-2),则可得点E的坐标,由及勾股定理可求得点的坐标;
    (3)分别过点A、B作y轴的平行线,与过点G的垂直于y轴的直线分别交于点C、M,则点E在线段CM上运动,根据对称性知,点运动路径的长度等于CM的长,故只要求得CM的长即可,由A、B两点的坐标即可求得CM的长.
    (1)
    所作出点E的对应点E′如下图所示:
    (2)
    设直线l交x轴于点D
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    在y=2x-2中,令y=0,得x=1;令x=0,得y=-2
    则点D、点G的坐标分别为(1,0)、(0,-2)
    ∴OD=1,OG=2
    由对称性的性质得:,
    ∵GE∥x轴




    设点P的坐标为(a,2a-2),其中a>0,则可得点E的坐标为(a,-2)
    ∴EG=a


    在Rt△中,由勾股定理得:
    解得:
    当时,
    所以点P的坐标为
    (3)
    分别过点A、B作y轴的平行线,与过点G的垂直于y轴的直线分别交于点C、M,则点E在线段CM上运动,根据对称性知,点运动路径的长度等于CM的长
    ∵A,B两点的坐标分别为(-2,-6),(4,6)
    ∴CM=4-(-2)=6
    则点运动路径的长为6
    故答案为:6
    【点睛】
    本题主要考查了一次函数的图象与性质、折叠的性质、尺规作图等知识,一次函数的性质及折叠的性质的应用是本题的关键.
    5、
    (1)见解析,,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (2)见解析,,
    【分析】
    (1)由题意依据作轴对称图形的方法作出关于轴对称的,进而即可得出,的坐标;
    (2)根据题意作关于轴的对称点,连接两点与轴的交点即为点,进而设直线的解析式为并结合勾股定理进行求解.
    (1)
    解:如图所示,即为所求.,
    (2)
    解:如图点即为所求.点关于轴对称点.
    设直线的解析式为.
    将,代入得
    ,,
    ∴直线
    当时,.,,
    最小.
    【点睛】
    本题考查画轴对称图形以及勾股定理,熟练掌握并利用轴对称的性质解决线段和的最小值是解题的关键.

    相关试卷

    中考强化练习湖南省常德市中考数学高频模拟汇总 卷(Ⅲ)(含答案及详解):

    这是一份中考强化练习湖南省常德市中考数学高频模拟汇总 卷(Ⅲ)(含答案及详解),共24页。试卷主要包含了下列等式变形中,不正确的是等内容,欢迎下载使用。

    中考强化练习湖南省常德市中考数学高频模拟汇总 卷(Ⅰ)(含详解):

    这是一份中考强化练习湖南省常德市中考数学高频模拟汇总 卷(Ⅰ)(含详解),共27页。试卷主要包含了如图,某汽车离开某城市的距离y等内容,欢迎下载使用。

    中考强化练习广西来宾市中考数学高频模拟汇总卷(含答案详解):

    这是一份中考强化练习广西来宾市中考数学高频模拟汇总卷(含答案详解),共24页。试卷主要包含了单项式的次数是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map