中考强化练习贵州省安顺市中考数学第一次模拟试题(含答案及详解)
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,A、B、C、D为一个正多边形的顶点,O为正多边形的中心,若,则这个正多边形的边数为( )
A.10B.11C.12D.13
2、北京冬奥会标志性场馆国家速滑馆“冰丝带”近12000平方米的冰面采用分模块控制技术,可根据不同项目分区域、分标准制冰.将12000用科学记数法表示为( )
A.B.C.D.
3、下列各式中,不是代数式的是( )
A.5ab2B.2x+1=7C.0D.4a﹣b
4、抛物线的顶点为( )
A.B.C.D.
5、一副三角板按如图所示的方式摆放,则∠1补角的度数为( )
A.B.C.D.
6、2021年10月16日,中国神舟十三号载人飞船的长征二号F遥十三运载火箭在中国酒泉卫星发射中心按照预定时间精准点火发射,约582秒后,神舟十三号载人飞船与火箭成功分离,进入预定轨道,截至2021年11月2日,“神舟十三号”载人飞船已在轨飞行18天,距离地球约63800000千米,用科学记数法表示63800000为( )
A.B.C.D.
7、下列宣传图案中,既中心对称图形又是轴对称图形的是( )
A.B.
C.D.
8、如图,将一副三角板平放在一平面上(点D在上),则的度数为( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.B.C.D.
9、如图,在中,,点D是BC上一点,BD的垂直平分线交AB于点E,将沿AD折叠,点C恰好与点E重合,则等于( )
A.19°B.20°C.24°D.25°
10、如图,点,,若点P为x轴上一点,当最大时,点P的坐标为( )
A.B.C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、某树主干长出x根枝干,每个枝干又长出x根小分支,若主干、枝干和小分支总数共133根,则主干长出枝干的根数x为______.
2、两个人玩“石头、剪刀、布”游戏,在保证游戏公平的情况下,随机出手一次,两人手势不相同的概率是___________.
3、如图,在中,,,,以点A为圆心,的长为半径画弧,以点B为圆心,的长为半径画弧,两弧分别交于点D、F,则图中阴影部分的面积是_________.
4、如图,和均为等边三角形,,分别在边,上,连接,,若,则__________.
5、如图,在边长相同的小正方形组成的网格中,点A、B、O都在这些小正方形的顶点上,那么sin∠AOB的值为______.
三、解答题(5小题,每小题10分,共计50分)
1、请阅读下面材料,并完成相应的任务;
阿基米德折弦定理
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
阿基米德(Arehimedes,公元前287—公元前212年,古希腊)是有史以来最伟大的数学家之一,他与牛顿、高斯并称为三大数学王子.
阿拉伯Al-Biruni(973年—1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al-Biruni译本出版了俄文版《阿基米德全集》,第一题就是阿基米德的折弦定理.
阿基米德折弦定理:如图1,AB和BC是的两条弦(即折线ABC是圆的一条折弦),,M是的中点,则从点M向BC所作垂线的垂足D是折弦ABC的中点,即.
这个定理有很多证明方法,下面是运用“垂线法”证明的部分证明过程.
证明:如图2,过点M作射线AB,垂足为点H,连接MA,MB,MC.
∵M是的中点,
∴.
…
任务:
(1)请按照上面的证明思路,写出该证明的剩余部分;
(2)如图3,已知等边三角形ABC内接于,D为上一点,,于点E,,连接AD,则的周长是______.
2、如图,平面内有两个点A,B.应用量角器、圆规和带刻度的直尺完成下列画图或测量:
(1)经过A,B两点画直线,写出你发现的基本事实;
(2)利用量角器在直线AB一侧画;
(3)在射线BC上用圆规截取BD=AB(保留作图痕迹);
(4)连接AD,取AD中点E,连接BE;
(5)通过作图我们知道.,观察并测量图形中的角,写出一组你发现的两个角之间可能存在的数量关系.
3、如图所示的正方形网格中,每个小正方形的边长都为1,的顶点都在网格线的交点上,点B坐标为,点C的坐标为.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)根据上述条件,在网格中画出平面直角坐标系;
(2)画出关于x轴对称图形;
(3)点A绕点B顺时针旋转90°,点A对应点的坐标为______.
4、已知,如图,,C为上一点,与相交于点F,连接.,.
(1)求证:;
(2)已知,,,求的长度.
5、如图,在△ABC中,∠ABC=3∠C,AD平分∠BAC,BE⊥AD于E,求证:BE(AC﹣AB).
-参考答案-
一、单选题
1、A
【分析】
作正多边形的外接圆,连接 AO,BO,根据圆周角定理得到∠AOB=36°,根据中心角的定义即可求解.
【详解】
解:如图,作正多边形的外接圆,连接AO,BO,
∴∠AOB=2∠ADB=36°,
∴这个正多边形的边数为=10.
故选:A.
【点睛】
此题主要考查正多边形的性质,解题的关键是熟知圆周角定理.
2、C
【分析】
科学记数法的形式是: ,其中<10,为整数.所以,取决于原数小数点的移动位数与移动方向,是小数点的移动位数,往左移动,为正整数,往右移动,为负整数.本题小数点往左移动到4的后面,所以
【详解】
解:12000
故选C
【点睛】
本题考查的知识点是用科学记数法表示绝对值较大的数,关键是在理解科学记数法的基础上确定好的值,同时掌握小数点移动对一个数的影响.
3、B
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【分析】
根据代数式的定义即可判定.
【详解】
A. 5ab2是代数式;
B. 2x+1=7是方程,故错误;
C. 0是代数式;
D. 4a﹣b是代数式;
故选B.
【点睛】
此题主要考查代数式的判断,解题的关键是熟知:代数式的定义:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,叫做代数式.单独的一个数或一个字母也是代数式.
4、B
【分析】
根据抛物线的顶点式y=a(x-h)2+k可得顶点坐标是(h,k).
【详解】
解:∵y=2(x-1)2+3,
∴抛物线的顶点坐标为(1,3),
故选:B.
【点睛】
本题考查二次函数的性质,解题的关键是熟练掌握抛物线的顶点式y=a(x-h)2+k,顶点坐标是(h,k).
5、D
【分析】
根据题意得出∠1=15°,再求∠1补角即可.
【详解】
由图形可得
∴∠1补角的度数为
故选:D.
【点睛】
本题考查利用三角板求度数和补角的定义,熟记各个三角板的角的度数是解题的关键.
6、B
【分析】
科学记数法的表示形式为的形式,其中,n为整数;确定n的值时,要把原数变成a,小数点移动了多少位,n的绝对值与小数点移动的位数相同;当原数的绝对值大于10时,n为正整数,当原数的绝对值小于1时,n为负整数.
【详解】
故选:B
【点睛】
本题考查了科学记数法的表示方法;科学记数法的表示形式为的形式,其中,n为整数,熟练地掌握科学记数法的表示方法是解本题的关键.
7、C
【分析】
根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
【详解】
解:A.是轴对称图形,不是中心对称图形,故本选项不合题意;
B.不是轴对称图形,也不是中心对称图形,故本选项不合题意;
C.既是轴对称图形,又是中心对称图形,故本选项符合题意;
D.不是轴对称图形,也不是中心对称图形,故本选项不合题意.
故选:C.
【点睛】
本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
8、B
【分析】
根据三角尺可得,根据三角形的外角性质即可求得
【详解】
解:
故选B
【点睛】
本题考查了三角形的外角性质,掌握三角形的外角性质是解题的关键.
9、B
【分析】
根据垂直平分线和等腰三角形性质,得;根据三角形外角性质,得;根据轴对称的性质,得,,;根据补角的性质计算得,根据三角形内角和的性质列一元一次方程并求解,即可得到答案.
【详解】
∵BD的垂直平分线交AB于点E,
∴
∴
∴
∵将沿AD折叠,点C恰好与点E重合,
∴,,
∵
∴
∵
∴
∴
故选:B.
【点睛】
本题考查了轴对称、三角形内角和、三角形外角、补角、一元一次方程的知识;解题的关键是熟练掌握轴对称、三角形内角和、三角形外角的性质,从而完成求解.
10、A
【分析】
作点A关于x轴的对称点,连接并延长交x轴于P,根据三角形任意两边之差小于第三边可知,此时的最大,利用待定系数法求出直线的函数表达式并求出与x轴的交点坐标即· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
可.
【详解】
解:如图,作点A关于x轴的对称点,则PA=,
∴≤(当P、、B共线时取等号),
连接并延长交x轴于P,此时的最大,且点的坐标为(1,-1),
设直线的函数表达式为y=kx+b,
将(1,-1)、B(2,-3)代入,得:
,解得:,
∴y=-2x+1,
当y=0时,由0=-2x+1得:x=,
∴点P坐标为(,0),
故选:A
【点睛】本题考查坐标与图形变换=轴对称、三角形的三边关系、待定系数法求一次函数的解析式、一次函数与x轴的交点问题,熟练掌握用三角形三边关系解决最值问题是解答的关键.
二、填空题
1、
【解析】
【分析】
某树主干长出x根枝干,每个枝干又长出x根小分支,则小分支有根,可得主干、枝干和小分支总数为根,再列方程解方程,从而可得答案.
【详解】
解:某树主干长出x根枝干,每个枝干又长出x根小分支,则
解得:
经检验:不符合题意;取
答:主干长出枝干的根数x为
故答案为:
【点睛】
本题考查的是一元二次方程的应用,理解题意,用含的代数式表示主干、枝干和小分支总数是解本题的关键.
2、
【解析】
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
画出树状图分析,找出可能出现的情况,再计算即可.
【详解】
解:画树形图如下:
从树形图可以看出,所有可能出现的结果共有9种,两人手势不相同有6种,
所以两人手势不相同的概率=,
故答案为:.
【点睛】
本题涉及列表法和树状图法以及相关概率知识,用到的知识点为:概率=所求情况数与总情况数之比.
3、
【解析】
【分析】
根据直角三角形30度角的性质及勾股定理求出AC、BC,∠A=60°,利用扇形面积公式求出阴影面积.
【详解】
解:在中,,,,
∴AC=1,,∠A=60°,
∴图中阴影部分的面积=
=
=,
故答案为:.
【点睛】
此题考查了直角三角形30度角的性质,勾股定理,扇形面积的计算公式,直角三角形面积公式,熟记各知识点并综合应用是解题的关键.
4、##45度
【解析】
【分析】
根据题意利用全等三角形的判定与性质得出和,进而依据进行计算即可.
【详解】
解:∵和均为等边三角形,
∴,
∴
在和中,
,
∴,
∴,
∴.
故答案为:.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题考查全等三角形的判定与性质以及等边三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键.
5、
【解析】
【分析】
如图,过点B向AO作垂线交点为C,勾股定理求出,的值,求出的长,求出值即可.
【详解】
解:如图,过点B向AO作垂线交点为C,O到AB的距离为h
∵,,,
∴
故答案为:.
【点睛】
本题考查了锐角三角函数值,勾股定理.解题的关键是表示出所需线段长.
三、解答题
1、(1)见解析;(2).
【分析】
(1)先证明,进而得到,再证明,最后由线段的和差解题;
(2)连接CD,由阿基米德折弦定理得,BE=ED+AD,结合题意得到,由勾股定理解得,据此解题.
【详解】
证明:(1)是的中点,
在与中,
与中,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
;
(2)如图3,连接CD
等边三角形ABC中,AB=BC
由阿基米德折弦定理得,BE=ED+AD
故答案为:.
【点睛】
本题考查圆的综合题、全等三角形的判定与性质、等腰三角形的性质、等边三角形的性质、勾股定理等知识,是重要考点,掌握相关知识是解题关键.
2、(1)画图见解析,基本事实:两点确定一条直线;(2)画图见解析;(3)画图见解析;(4)画图见解析;(5)
【分析】
(1)直接过AB两点画直线即可;
(2)用量角器直接画图即可;
(3)以B为圆心,BA长度为半径画圆即可;
(4)用带刻度的直尺量出AD长度取中点即可;
(5)用量角器测量各个角度大小即可;
【详解】
(1)画图如下,基本事实:两点确定一条直线
(2)画图如下;
(3)画图如下;
(4)画图如下;
(5)不唯一,正确即可.
例如:,,等
或
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题考查线段和角度作图,熟练使用量角器、圆规和带刻度的直尺是解题的关键.
3、
(1)见解析
(2)见解析
(3)(2,2)
【分析】
(1)根据点B坐标为,点C的坐标为确定原点,再画出坐标系即可;
(2)画出三角形顶点的对称点,再顺次连接即可;
(3)画出旋转后点的位置,写出坐标即可.
(1)
解:坐标系如图所示,
(2)
解:如图所示,就是所求作三角形;
(3)
解:如图所示,点A绕点B顺时针旋转90°的对应点为,坐标为(2,2);
故答案为:(2,2)
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题考查了平面直角坐标系作图,解题关键是明确轴对称和旋转的性质,准确作出图形,写出坐标.
4、(1)证明见解析;(2)
【分析】
(1)先证明再结合证明 从而可得结论;
(2)先证明 再证明 从而利用等面积法可得的长度.
【详解】
解:(1) ,
而
(2) ,,,
【点睛】
本题考查的是三角形的外角的性质,平行线的性质与判定,勾股定理的逆定理的应用,证明是解本题的关键.
5、见解析
【分析】
根据全等三角形的判定与性质,可得∠ABF=∠AFB,AB=AF,BE=EF,根据三角形外角的性质,可得∠C+∠CBF=∠AFB=∠ABF,根据角的和差、等量代换,可得∠CBF=∠C,根据等腰三角形的判定,可得BF=CF,根据线段的和差、等式的性质,可得答案
【详解】
证明:如图:延长BE交AC于点F,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵BF⊥AD,
∴∠AEB=∠AEF.
∵AD平分∠BAC
∴∠BAE=∠FAE
在△ABE和△AFE中,
∴△ABE≌△AFE (ASA)
∴∠ABF=∠AFB, AB=AF, BE=EF
∵∠C+∠CBF=∠AFB=∠ABF
∴∠ABF+∠CBF=∠ABC=3∠C
∴∠C+2∠CBF=3∠C
∴∠CBF=∠C
∴BF=CF
∴BE=BF=CF
∵CF=AC-AF=AC-AB
∴BE= (AC-AB)
【点睛】
本题考查了等腰三角形的判定与性质,利用了全等三角形的判定与性质,三角形外角的性质,等量代换,等式的性质,利用等量代换得出∠CBF=∠C是解题关键
中考强化练习贵州省中考数学第一次模拟试题(含答案详解): 这是一份中考强化练习贵州省中考数学第一次模拟试题(含答案详解),共26页。试卷主要包含了如图,E,如图,在中,,,,则的度数为,如图,A等内容,欢迎下载使用。
中考强化练习贵州省安顺市中考数学备考模拟测评 卷(Ⅰ)(含详解): 这是一份中考强化练习贵州省安顺市中考数学备考模拟测评 卷(Ⅰ)(含详解),共29页。试卷主要包含了单项式的次数是,已知,则的补角等于,如图,某汽车离开某城市的距离y,下列图形是全等图形的是等内容,欢迎下载使用。
强化训练贵州省安顺市中考数学备考模拟测评 卷(Ⅰ)(含答案及详解): 这是一份强化训练贵州省安顺市中考数学备考模拟测评 卷(Ⅰ)(含答案及详解),共23页。试卷主要包含了如图,下列条件中不能判定的是等内容,欢迎下载使用。