搜索
    上传资料 赚现金
    英语朗读宝

    中考强化练习湖南省长沙市中考数学第二次模拟试题(含答案及详解)

    中考强化练习湖南省长沙市中考数学第二次模拟试题(含答案及详解)第1页
    中考强化练习湖南省长沙市中考数学第二次模拟试题(含答案及详解)第2页
    中考强化练习湖南省长沙市中考数学第二次模拟试题(含答案及详解)第3页
    还剩28页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考强化练习湖南省长沙市中考数学第二次模拟试题(含答案及详解)

    展开

    这是一份中考强化练习湖南省长沙市中考数学第二次模拟试题(含答案及详解),共31页。试卷主要包含了如图,有三块菜地△ACD,下列语句中,不正确的是,下列等式变形中,不正确的是,下列方程中,解为的方程是等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、抛物线的顶点为( )
    A.B.C.D.
    2、一枚质地均匀的骰子六个面上分别刻有1到6的点数,掷一次骰子,下列事件中是随机事件的是( )
    A.向上的点数大于0B.向上的点数是7
    C.向上的点数是4D.向上的点数小于7
    3、2021年10月16日,中国神舟十三号载人飞船的长征二号F遥十三运载火箭在中国酒泉卫星发射中心按照预定时间精准点火发射,约582秒后,神舟十三号载人飞船与火箭成功分离,进入预定轨道,截至2021年11月2日,“神舟十三号”载人飞船已在轨飞行18天,距离地球约63800000千米,用科学记数法表示63800000为( )
    A.B.C.D.
    4、如图,有三块菜地△ACD、△ABD、△BDE分别种植三种蔬菜,点D为AE与BC的交点,AD平分∠BAC,AD=DE,AB=3AC,菜地△BDE的面积为96,则菜地△ACD的面积是( )
    A.24B.27C.32D.36
    5、下列语句中,不正确的是( )
    A.0是单项式B.多项式的次数是4
    C.的系数是D.的系数和次数都是1
    6、下列等式变形中,不正确的是( )
    A.若,则B.若,则
    C.若,则D.若,则
    7、下列方程中,解为的方程是( )
    A.B.C.D.
    8、下列图形中,能用,,三种方法表示同一个角的是( )
    A.B.
    C.D.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    9、如图,点F在BC上,BC=EF,AB=AE,∠B=∠E,则下列角中,和2∠C度数相等的角是( )
    A.B.C.D.
    10、单项式的次数是( )
    A.1B.2C.3D.4
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,等边边长为4,点D、E、F分别是AB、BC、AC的中点,分别以D、E、F为圆心,DE长为半径画弧,围成一个曲边三角形,则曲边三角形的周长为______.
    2、如图,在矩形ABCD中,cm,cm.动点P、Q分别从点A、C以1cm/s的速度同时出发.动点P沿AB向终点B运动,动点Q沿CD向终点D运动,连结PQ交对角线AC于点O.设点P的运动时间为.
    (1)当四边形APQD是矩形时,t的值为______.
    (2)当四边形APCQ是菱形时,t的值为______.
    (3)当是等腰三角形时,t的值为______.
    3、如图,在边长相同的小正方形组成的网格中,点A、B、O都在这些小正方形的顶点上,那么sin∠AOB的值为______.
    4、长方形纸片按图中方式折叠,其中为折痕,如果折叠后在一条直线上,那么的大小是________度.
    5、已知点P是线段AB的黄金分割点,AP>PB.若AB=2,则AP=_____.
    三、解答题(5小题,每小题10分,共计50分)
    1、已知平行四边形的顶点、分别在其的边、上,顶点、在其的对角线上.

    图1 图2
    (1)如图1,求证:;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (2)如图2,若,,求的值;
    (3)如图1,当,,求时,求的值.
    2、解方程:
    (1);
    (2).
    3、已知的负的平方根是,的立方根是3,求的四次方根.
    4、如图,在等腰中,,点是边上的中点,过点作,交的延长线于点,过点作,交于点,交于点,交于点.
    求证:
    (1);
    (2).
    5、如图,抛物线与x轴相交于点A,与y轴交于点B,C为线段OA上的一个动点,过点C作x轴的垂线,交直线AB于点D,交该抛物线于点E.
    (1)求直线AB的表达式,直接写出顶点M的坐标;
    (2)当以B,E,D为顶点的三角形与相似时,求点C的坐标;
    (3)当时,求与的面积之比.
    -参考答案-
    一、单选题
    1、B
    【分析】
    根据抛物线的顶点式y=a(x-h)2+k可得顶点坐标是(h,k).
    【详解】
    解:∵y=2(x-1)2+3,
    ∴抛物线的顶点坐标为(1,3),
    故选:B.
    【点睛】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    本题考查二次函数的性质,解题的关键是熟练掌握抛物线的顶点式y=a(x-h)2+k,顶点坐标是(h,k).
    2、C
    【分析】
    根据必然事件、不可能事件、随机事件的概念以及事件发生的可能性大小判断即可.
    【详解】
    解:A. 向上的点数大于0,是必然事件,故此选项不符合题意;
    B. 向上的点数是7,是不可能事件,故此选项不符合题意;
    C. 向上的点数是4,是随机事件,故此选项符合题意;
    D. 向上的点数小于7,是必然事件,故此选项不符合题意
    故选C
    【点睛】
    本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
    3、B
    【分析】
    科学记数法的表示形式为的形式,其中,n为整数;确定n的值时,要把原数变成a,小数点移动了多少位,n的绝对值与小数点移动的位数相同;当原数的绝对值大于10时,n为正整数,当原数的绝对值小于1时,n为负整数.
    【详解】
    故选:B
    【点睛】
    本题考查了科学记数法的表示方法;科学记数法的表示形式为的形式,其中,n为整数,熟练地掌握科学记数法的表示方法是解本题的关键.
    4、C
    【分析】
    利用三角形的中线平分三角形的面积求得S△ABD=S△BDE=96,利用角平分线的性质得到△ACD与△ABD的高相等,进一步求解即可.
    【详解】
    解:∵AD=DE,S△BDE=96,
    ∴S△ABD=S△BDE=96,
    过点D作DG⊥AC于点G,过点D作DF⊥AB于点F,
    ∵AD平分∠BAC,
    ∴DG=DF,
    ∴△ACD与△ABD的高相等,
    又∵AB=3AC,
    ∴S△ACD=S△ABD=.
    故选:C.
    【点睛】
    本题考查了角平分线的性质,三角形中线的性质,解题的关键是灵活运用所学知识解决问题.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    5、D
    【分析】
    分别根据单独一个数也是单项式、多项式中每个单项式的最高次数是这个多项式的次数、单项式中的数字因数是这个单项式的系数、单项式中所有字母的指数和是这个单项式的次数解答即可.
    【详解】
    解:A、0是单项式,正确,不符合题意;
    B、多项式的次数是4,正确,不符合题意;
    C、的系数是,正确,不符合题意;
    D、的系数是-1,次数是1,错误,符合题意,
    故选:D.
    【点睛】
    本题考查单项式、单项式的系数和次数、多项式的次数,理解相关知识的概念是解答的关键.
    6、D
    【分析】
    根据等式的性质即可求出答案.
    【详解】
    解:A.a=b的两边都加5,可得a+5=b+5,原变形正确,故此选项不符合题意;
    B.a=b的两边都除以3,可得,原变形正确,故此选项不符合题意;
    C.的两边都乘6,可得,原变形正确,故此选项不符合题意;
    D.由|a|=|b|,可得a=b或a=−b,原变形错误,故此选项符合题意.
    故选:D.
    【点睛】
    本题考查等式的性质,解题的关键是熟练运用等式的性质.等式的性质:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.
    7、D
    【分析】
    求出选项各方程的解即可.
    【详解】
    A、,解得:,不符合题意.
    B、,解得:,不符合题意.
    C、,解得:,不符合题意.
    D、,解得:,符合题意.
    故选:D .
    【点睛】
    此题考查的知识点是一元一次方程的解,关键是分别求出各方程的解.
    8、A
    【分析】
    根据角的表示的性质,对各个选项逐个分析,即可得到答案.
    【详解】
    A选项中,可用,,三种方法表示同一个角;
    B选项中,能用表示,不能用表示;
    C选项中,点A、O、B在一条直线上,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴能用表示,不能用表示;
    D选项中,能用表示,不能用表示;
    故选:A.
    【点睛】
    本题考查了角的知识;解题的关键是熟练掌握角的表示的性质,从而完成求解.
    9、D
    【分析】
    根据SAS证明△AEF≌△ABC,由全等三角形的性质和等腰三角形的性质即可求解.
    【详解】
    解:在△AEF和△ABC中,

    ∴△AEF≌△ABC(SAS),
    ∴AF=AC,∠AFE=∠C,
    ∴∠C=∠AFC,
    ∴∠EFC=∠AFE+∠AFC=2∠C.
    故选:D.
    【点睛】
    本题主要考查了全等三角形的判定与性质,等腰三角形的判定和性质,熟练掌握全等三角形的判定与性质是解决问题的关键.
    10、C
    【分析】
    单项式中所有字母的指数和是单项式的次数,根据概念直接作答即可.
    【详解】
    解:单项式的次数是3,
    故选C
    【点睛】
    本题考查的是单项式的次数的含义,掌握“单项式中所有字母的指数和是单项式的次数”是解本题的关键.
    二、填空题
    1、
    【解析】
    【分析】
    证明△DEF是等边三角形,求出圆心角的度数,利用弧长公式计算即可.
    【详解】
    解:连接EF、DF、DE,
    ∵等边边长为4,点D、E、F分别是AB、BC、AC的中点,
    ∴是等边三角形,边长为2,
    ∴∠EDF=60°,
    弧EF的长度为,同理可求弧DF、DE的长度为,
    则曲边三角形的周长为;
    故答案为:.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【点睛】
    本题考查了等边三角形的性质与判定和弧长计算,中位线的性质,解题关键是熟记弧长公式,正确求出圆心角和半径.
    2、 4 或5或4
    【解析】
    【分析】
    (1)根据矩形的性质得到CD=cm,,求出DQ=(8-t)cm,由四边形APQD是矩形时,得到t=8-t,求出t值;
    (2)连接PC,求出AP=PC=tcm,PB=(8-t)cm,由勾股定理得,即,求解即可;
    (3)由勾股定理求出AC=10cm,证明△OAP≌△OCQ,得到OA=OC=5cm,分三种情况:当AP=OP时,过点P作PN⊥AO于N,证明△NAP∽△BAC,得到,求出t=;当AP=AO=5cm时,t=5;当OP=AO=5cm时,过点O作OG⊥AB于G,证明△OAG∽△CAB,得到,代入数值求出t.
    【详解】
    解:(1)由题意得AP=CQ=t,
    ∵在矩形ABCD中,cm,cm.
    ∴CD=cm,,
    ∴DQ=(8-t)cm,
    当四边形APQD是矩形时,AP=DQ,
    ∴t=8-t,
    解得t=4,
    故答案为:4;
    (2)连接PC,
    ∵四边形APCQ是菱形,
    ∴AP=PC=tcm,PB=(8-t)cm,
    ∵在矩形ABCD中,∠B=90°,
    ∴,
    ∴,
    解得,
    故答案为:;
    (3)∵∠B=90°,cm,cm.
    ∴AC=10cm,
    ∵,
    ∴∠OAP=∠OCQ,∠OPA=∠OQC,
    ∴△OAP≌△OCQ,
    ∴OA=OC=5cm,
    分三种情况:
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    当AP=OP时,过点P作PN⊥AO于N,则AN=ON=2.5cm,
    ∵∠NAP=∠BAC,∠ANP=∠B,
    ∴△NAP∽△BAC,
    ∴,
    ∴,
    解得t=;
    当AP=AO=5cm时,t=5;
    当OP=AO=5cm时,过点O作OG⊥AB于G,则,
    ∵∠OAG=∠BAC,∠OGA=∠B,
    ∴△OAG∽△CAB,
    ∴,
    ∴,
    解得t=4,
    故答案为:或5或4.
    【点睛】
    此题考查了矩形的性质,菱形的性质,等腰三角形的性质,勾股定理,相似三角形的判定及性质,熟记各知识点并应用解决问题是解题的关键.
    3、
    【解析】
    【分析】
    如图,过点B向AO作垂线交点为C,勾股定理求出,的值,求出的长,求出值即可.
    【详解】
    解:如图,过点B向AO作垂线交点为C,O到AB的距离为h
    ∵,,,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·

    故答案为:.
    【点睛】
    本题考查了锐角三角函数值,勾股定理.解题的关键是表示出所需线段长.
    4、90
    【解析】
    【分析】
    根据折叠的性质,∠1=∠2,∠3=∠4,利用平角,计算∠2+∠3的度数即可.
    【详解】
    如图,根据折叠的性质,∠1=∠2,∠3=∠4,
    ∵∠1+∠2+∠3+∠4=180°,
    ∴2∠2+2∠3=180°,
    ∴∠2+∠3=90°,
    ∴=90°,
    故答案为:90.
    【点睛】
    本题考查了折叠的性质,两个角的和,熟练掌握折叠的性质,灵活运用两个角的和是解题的关键.
    5、##
    【解析】
    【分析】
    根据黄金分割点的定义,知AP是较长线段;则AP=AB,代入数据即可得出AP的长.
    【详解】
    解:由于P为线段AB=2的黄金分割点,且AP是较长线段;
    则AP=2×=,
    故答案为:.
    【点睛】
    本题考查了黄金分割点即线段上一点把线段分成较长和较短的两条线段,且较长线段的平方等于较短线段与全线段的积,熟练掌握黄金分割点的公式是解题的关键.
    三、解答题
    1、
    (1)证明见解析
    (2)
    (3)
    【分析】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (1)根据四边形,四边形都是平行四边形,得到和,然后证明,即可证明出;
    (2)作于M点,设,首先根据,证明出四边形和四边形都是矩形,然后根据同角的余角相等得到,然后根据同角的三角函数值相等得到,即可表示出BF和FH的长度,进而可求出的值;
    (3)过点E作于M点,首先根据题意证明出,得到,,然后根据等腰三角形三线合一的性质得到,设,根据题意表示出,,过点E作,交BD于N,然后由证明出,设,根据相似三角形的性质得出,然后由30°角所对直角边是斜边的一半得到,进而得到,解方程求出,然后表示出,根据勾股定理得到EH和EF的长度,即可求出的值.
    (1)
    解:∵四边形EFGH是平行四边形


    ∵四边形ABCD是平行四边形


    在和中



    ∴;
    (2)
    解:如图所示,作于M点,设
    ∵四边形和四边形都是平行四边形,
    ∴四边形和四边形都是矩形



    ∴,





    由(1)得:

    ∴;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (3)
    解:如图所示,过点E作于M点
    ∵四边形ABCD是平行四边形


    ∴,即










    由(1)得:


    过点E作,交BD于N
















    解得:或(舍去)
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·

    由勾股定理得:
    ∴.
    【点睛】
    此题考查了矩形的性质,相似三角形的性质和判定,勾股定理等知识,解题的关键是熟练掌握矩形的性质,相似三角形的性质和判定,勾股定理,根据题意正确作出辅助线求解.
    2、
    (1)x=2;
    (2)x=-1
    【分析】
    (1)根据一元一次方程的解法解答即可;
    (2)根据一元一次方程的解法解答即可.
    (1)
    解:去括号,得:8-4x+12=6x,
    移项、合并同类项,得:-10x=-20,
    化系数为1,得:x=2;
    (2)
    解:去分母,得:3(2x+3)-(x-2)=6,
    去括号,得:6x+9-x+2=6,
    移项、合并同类项,得:5x=-5,
    化系数为1,得:x=-1;
    【点睛】
    本题考查解一元一次方程,熟练掌握一元一次方程的解法步骤是解答的关键.
    3、
    【分析】
    根据的负的平方根是,的立方根是3,可以求得、的值,从而可以求得所求式子的四次方根.
    【详解】
    解:的负的平方根是,的立方根是3,

    解得,,

    的四次方根是,
    即的四次方根是.
    【点睛】
    本题考查平方根、立方根,以及二元一次方程组的解法,解答本题的关键是明确题意,求出、的值.
    4、
    (1)见解析
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (2)见解析
    【分析】
    (1)利用已知条件证明即可;
    (2)通过证明得出,再根据,得出结论.
    (1)
    证明:,,






    (2)
    证明,点是边上的中点,
    ,,










    即.
    【点睛】
    本题考查了三角形相似的判定和性质以及直角三角形和等腰三角形的性质,解题的关键是掌握相似三角形的判定定理进行证明.
    5、
    (1),,
    (2),或,
    (3)
    【分析】
    (1)求出、点的坐标,用待定系数法求直线的解析式即可;
    (2)由题意可知是直角三角形,设,分两种情况讨论①当,时,,此时,由此可求;②当时,过点作轴交于点,可证明,则,可求,再由点在抛物线上,则可求,进而求点坐标;
    (3)作的垂直平分线交轴于点,连接,过点作于点,则有,在中,,求出,,则,设,则,,则有,求出,即可求.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (1)
    解:令,则,
    或,

    令,则,

    设直线的解析式为,




    ,;
    (2)
    解:,,
    是直角三角形,
    设,
    ①如图1,
    当,时,,


    (舍或,
    ,;
    ②如图2,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    当时,
    过点作轴交于点,
    ,,


    ,即,



    (舍或,
    ,;
    综上所述:点的坐标为,或,;
    (3)
    解:如图3,作的垂直平分线交轴于点,连接,过点作于点,




    在中,,





    设,则,,
    ,,,,,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·





    【点睛】
    本题是二次函数的综合题,求一次函数的解析式,解题的关键熟练掌握二次函数的图象及性质,三角形相似的性质与判定,分类讨论,数形结合也是解题的关键.

    相关试卷

    中考强化练习湖南省中考数学模拟测评 卷(Ⅰ)(含答案详解):

    这是一份中考强化练习湖南省中考数学模拟测评 卷(Ⅰ)(含答案详解),共24页。试卷主要包含了下列图形是全等图形的是,利用如图①所示的长为a,抛物线的顶点为等内容,欢迎下载使用。

    中考强化练习湖南省衡阳市中考数学模拟练习 卷(Ⅱ)(含答案详解):

    这是一份中考强化练习湖南省衡阳市中考数学模拟练习 卷(Ⅱ)(含答案详解),共21页。试卷主要包含了已知,则的补角等于,如图个三角形.,下列计算中,正确的是等内容,欢迎下载使用。

    中考强化练习湖南省株洲市中考数学模拟 卷(Ⅱ)(含答案及详解):

    这是一份中考强化练习湖南省株洲市中考数学模拟 卷(Ⅱ)(含答案及详解),共31页。试卷主要包含了利用如图①所示的长为a,下列运算正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map