![第01讲 三角形有关的线段-【教师版】2024年八上数学同步精品讲义(人教版)第1页](http://img-preview.51jiaoxi.com/2/3/15597197/0-1712713364056/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![第01讲 三角形有关的线段-【教师版】2024年八上数学同步精品讲义(人教版)第2页](http://img-preview.51jiaoxi.com/2/3/15597197/0-1712713364119/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![第01讲 三角形有关的线段-【教师版】2024年八上数学同步精品讲义(人教版)第3页](http://img-preview.51jiaoxi.com/2/3/15597197/0-1712713364157/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![第01讲 三角形有关的线段-【学生版】2024年八上数学同步精品讲义(人教版)第1页](http://img-preview.51jiaoxi.com/2/3/15597197/1-1712713367232/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![第01讲 三角形有关的线段-【学生版】2024年八上数学同步精品讲义(人教版)第2页](http://img-preview.51jiaoxi.com/2/3/15597197/1-1712713367276/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![第01讲 三角形有关的线段-【学生版】2024年八上数学同步精品讲义(人教版)第3页](http://img-preview.51jiaoxi.com/2/3/15597197/1-1712713367325/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:【同步精品】人教版八年级数学上册同步精品讲义(人教版)
第01讲 三角形有关的线段-【同步精品】2024年八上数学同步精品讲义(人教版)
展开
这是一份第01讲 三角形有关的线段-【同步精品】2024年八上数学同步精品讲义(人教版),文件包含第01讲三角形有关的线段-教师版2024年八上数学同步精品讲义人教版docx、第01讲三角形有关的线段-学生版2024年八上数学同步精品讲义人教版docx等2份学案配套教学资源,其中学案共28页, 欢迎下载使用。
第01讲 三角形有关的线段 知识点01 三角形的认识与分类 三角形的认识: 如图:由三条不在 上的线段首位顺次连接组成的图形。用符号“△”来表示,表示为 。 其中:点A、点B、点C时三角形的 。 线段AB、BC、AC是三角形的 。 ∠A、∠B、∠C是三角形的 。 AB、AC与∠A相邻,所以是∠A的 ,BC与∠A相对,所以是∠A的 ; 同理可得∠B、∠C的邻边与对边。 题型考点:①判断认识三角形。三角形的分类: 三角形可按 或 进行分类。 ①按边分类: ②按角分类: 题型考点:三角形的分类。【即学即练1】1.图中共有三角形 个,其中以AE为边的三角形有 个.【即学即练2】2.关于三角形的分类,有如图所示的甲、乙两种分法,则( )A.甲、乙两种分法均正确 B.甲、乙两种分法均错误 C.甲的分法错误,乙的分法正确 D.甲的分法正确,乙的分法错误知识点02 三角形的三边关系三角形的三边关系: 由两点之间线段最短可知,三角形的任意两边之和 第三边。任意两边之差 第三边。 解题时常用两边之差小于第三边小于两边之和建立不等式。 题型考点:①判断能否构成三角形。②求第三边的范围。【即学即练1】3.将下列长度的三根木棒首尾顺次连接,能组成三角形的是( )A.1,2,3 B.3,4,5 C.2,3,5 D.3,5,9【即学即练2】4.若一个三角形两边的长分别为2和6,则这个三角形第三边的长可以是( )A.3 B.4 C.6 D.9【即学即练3】5.已知三角形的三边长分别为3,5,x,则x不可能是( )A.5 B.4 C.3 D.26.若三角形三边长为3,2x+1,10,则x的取值范围是 .知识点03 三角形的中线三角形中线的定义: 如图,三角形的顶点与 的连线段叫做三角形的中线。三角形中线的性质: ①AM是三角形的中线M是BC的 BM CM= BC。 ②中线平分三角形的 。即: ③中线分三角三角形的周长差等于对应另两边的差。即: ④三角形有 条中线,且三条中线交于一点,叫做三角形的 。 题型考点:①利用中线的性质进行与周长与面积有关的计算。【即学即练1】7.如图,已知△ABC中,点D、E分别是边BC、AB的中点.若△ABC的面积等于8,则△BDE的面积等于( ) 第7题 第8题A.2 B.3 C.4 D.5【即学即练2】8.如图,AD是△ABC的中线,AB=5,AC=4.若△ACD的周长为10,则△ABD的周长为( )A.8 B.9 C.10 D.11知识点04 三角形的高线三角形高线的定义: 如图,过三角形的顶点作对边的垂线, 之间的线段是三角形的高线。 BD是△ABC的高BD AC锐角三角形、直角三角形以及钝角三角形所有高线的画法: 三角形的垂心: 三角形有 条高线,且三条高线交于一点,这个点叫做三角形的 。高线与垂心的位置与三角形形状的关系: 锐角三角形的三条高都在 ,垂心在 。 直角三角形有两条高是 ,垂心在 。 钝角三角形有两条高在 ,垂心在 。 题型考点:①三角形高线的判断与作图。②根据高线与垂心的位置判断三角形的形状。【即学即练1】9.如所示的四个图形中,线段BD是△ABC的高的图形是( )A. B. C. D.【即学即练2】10.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( )A.锐角三角形 B.钝角三角形 C.直角三角形 D.不能确定知识点05 三角形的角平分线三角形角平分线的定义:如图。三角形的一个内角平分线与这个角对边相交,顶点和交点之间的 是三角形的角平分线。三角形角平分线的性质: ①AD是三角形的角平分线∠1 ∠2。 ②三角形的角平分线把三角形分得的两个小三角形的面积比等于被角平分线分边分得的两条线段比。即 。 ③三角形有 条角平分线,三条角平分交于一点,这一点叫做三角形的 。 题型考点:①角平分线的认识。【即学即练1】如图,在△ABC中,∠1=∠2=∠3=∠4,则下列说法中,正确的是( )A.AD是△ABE的中线 B.AE是△ABC的角平分线 C.AF是△ACE的高线 D.AE是△DAF的中线知识点06 三角形的稳定性三角形的稳定性:三角形的三条边确定,则这个三角形的 和 就会确定。这就是三角形的稳定性。 题型考点:判断三角形的稳定性在生活中的应用。【即学即练1】12.如图是位于汾河之上的通达桥,是山西省首座独塔悬索桥,是连接二青会的水上运动、沙滩排球等项目及场馆的主要通道,被誉为“时代之门”.桥身通过吊索与主缆拉拽着整个桥面,形成悬索体系使其更加稳固.其中运用的数学原理是( )A.三角形具有稳定性 B.两点确定一条直线 C.两点之间,线段最短 D.三角形的两边之和大于第三边题型01 利用三角形三边关系求取值范围【典例1】已知a,b,c是一个三角形的三边,且a,b满足.则c的取值范围是( )A.c>1 B.c<2 C.1<c≤2 D.1<c<3变式1:在△ABC中,AB=2n﹣5,AC=4,BC=13,则n的取值范围是( )A.n<11 B.7<n<11 C.9<n<17 D.n>7变式2:已知三角形三边分别为2,a﹣1,5,那么a的取值范围是( )A.2<a<5 B.3<a<6 C.3<a<7 D.4<a<8题型02 利用三角形三边关系化简【典例1】已知a,b,c是三角形的三条边,则|c﹣a﹣b|+|c+b﹣a|的化简结果为( )A.0 B.2a+2b C.2b D.2a+2b﹣2c变式1:已知a,b,c是三角形的三边长,化简:|a﹣b﹣c|+|b﹣c+a|+|c﹣a﹣b|= .变式2:已知三角形的三边长分别为2,a﹣1,4,则化简|a﹣3|﹣|a﹣7|的结果为 .题型03 三角形三边关系与等腰三角形【典例1】等腰三角形的两边长分别为4和9,这个三角形的周长是( )A.17 B.22 C.17或22 D.17和22变式1:在等腰△ABC中,AB=AC,其周长为16cm,则AB边的取值范围是( )A.1cm<AB<4cm B.3cm<AB<6cm C.4cm<AB<8cm D.5cm<AB<10cm变式2:等腰三角形的周长为26cm,一边长为6cm,那么腰长为( )A.6cm B.10cm C.6cm或10cm D.14cm变式3:已知a,b是等腰三角形的两边长,且a,b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为( )A.8 B.6或8 C.7 D.7或8题型04 三角形的中线与周长与面积的关系【典例1】如图,△ABC中,AB=16,BC=10,BD是AC边上的中线,若△ABD的周长为30,则△BCD的周长是( )A.20 B.24 C.26 D.28变式1:在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多3,AB与AC的和为13,则AC的长为( )A.5 B.6 C.7 D.8【典例2】已知:如图所示,在△ABC中,点D,E,F分别为BC,AD,CE的中点,且S△ABC=4cm2,则阴影部分的面积为 cm2.1.如图,图中三角形的个数共有( )A.3个 B.4个 C.5个 D.6个2.下列关于三角形的分类,有如图所示的甲、乙两种分法,则( )A.甲、乙两种分法均正确 B.甲分法正确,乙分法错误 C.甲分法错误,乙分法正确 D.甲、乙两种分法均错误3.图中的三角形被木板遮住了一部分,这个三角形是( )A.锐角三角形 B.直角三角形 C.钝角三角形 D.以上都有可能4.下列长度的三条线段中,能围成三角形的是( )A.5cm,6cm,12cm B.3cm,4cm,5cm C.4cm,6cm,10cm D.3cm,4cm,8cm5.在△ABC中,AB=2cm,AC=5cm,若BC的长为整数,则BC的长可能是( )A.2 cm B.3 cm C.6 cm D.7 cm6.若a,b,c为△ABC的三边长,化简:|b﹣a﹣c|﹣|a﹣b﹣c|= .7.用三角板作△ABC的边BC上的高,下列三角板的摆放位置正确的是( )A. B. C. D.8.三角形一边上的中线把原三角形分成两个( )A.形状相同的三角形 B.面积相等的三角形 C.直角三角形 D.周长相等的三角形9.如图,在△ABC中,点E是BC的中点,AB=7,AC=10,△ACE的周长是25,则△ABE的周长是 . 第9题 第10题 第12题10.如图,在生活中,我们经常会看见如图所示的情况,在电线杆上拉两条钢筋,来加固电线杆,这是利用了三角形的( )A.稳定性 B.灵活性 C.对称性 D.全等性11.一个三角形3条边长分别为xcm、(x+1)cm、(x+2)cm,它的周长不超过39cm,则x的取值范围是 .12.如图,直角三角形ABC中,∠ABC=90°,BD⊥AC于点D,AB=3,AD=1.8,BD=2.4,DC=3.2,BC=4,则点A到BD的距离是 .13.如图,在三角形ABC中,AB=10cm,AC=6cm,D是BC的中点,E点在边AB上.(1)若三角形BDE的周长与四边形ACDE的周长相等,求线段AE的长.(2)若三角形ABC的周长被DE分成的两部分的差是2cm,求线段AE的长.14.已知,△ABC的三边长为4,9,x.(1)求△ABC的周长的取值范围;(2)当△ABC的周长为偶数时,求x.15.已知a,b,c是三角形的三边长.(1)化简:|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a﹣b|;(2)若a=10,b=8,c=6,求(1)中式子的值.课程标准学习目标①三角形的认识与分类②三角形的三边关系③三角形的中线、高线以及角平分线④三角形的稳定性认识三角形并了解三角形的相关元素,并能根据三角形的特点对其进行分类。掌握三角形的三边关系,能够利用三边关系解题。掌握三角形的中线、高线、角平分线以及他们的性质。掌握三角形的稳定性并了解它在生活中的应用。