所属成套资源:【同步精品】人教版八年级数学上册同步精品讲义(人教版)
数学13.1.1 轴对称精品学案
展开
这是一份数学13.1.1 轴对称精品学案,文件包含第10讲画轴对称图形-教师版2024年八上数学同步精品讲义人教版docx、第10讲画轴对称图形-学生版2024年八上数学同步精品讲义人教版docx等2份学案配套教学资源,其中学案共41页, 欢迎下载使用。
知识点01 轴对称作图与轴对称图形作图
轴对称与轴对称图形的作图:
具体步骤:
找图形的 。
过关键点作对称轴的 并延长,使延长部分的长度等于关键点到 的长度,从而得到关键点的 。
(3)按照 连接各对应点。
题型考点:①作图。
【即学即练1】
1.如图,以直线l为对称轴,画出轴对称图形的另一半.
【即学即练2】
2.如图,△ABC的三个顶点的坐标分别为A(﹣4,1),B(﹣1,﹣1),C(﹣3,2).
(1)已知△ABC和△A1B1C1关于x轴对称,点A1,B1,C1分别是点A,B,C的对称点,请直接写出点A1,B1,C1的坐标;
(2)在图中画出△ABC关于y轴对称的△A2B2C2.
知识点02 画轴对称与轴对称图的对称轴
垂直平分线的画法:
具体步骤:
如图①:分别以线段AB两端点为 ,大于线段长度的 为半径画圆弧。两弧分别交于两点M,N。
如图②,连接MN,MN所在直线即为线段AB的垂直平分线。
垂直平分线的证明:
如图③,连接MA,MB,NA,NB。
由作图过程可知
MA=MB=NA=NB
在△MAN与△MBN中
∴△MAN≌△MBN
∴∠AMO=∠BMO
在△AMO与△BMO中
∴△AMO≌△BMO
∴OA=OB,∠AOM=∠BPM=90°
∴MN垂直平分AB。
对称轴的画法:
对称轴过任意一组对应点连线的中点且与线段垂直,所以对称轴是任意一组对应点的垂直平分线。作对称轴即是作任意一组对应点的垂直平分线。按照垂直平分线的作图即可。
题型考点:①尺规作图垂直平分线。
②根据作图痕迹求解题目。
③画对称轴。
【即学即练1】
3.如图所示,一辆汽车在笔直的公路AB上由A向B行驶,M,N分别是位于公路AB两侧的村庄,请利用尺规作图法,在AB上找一点C,使得汽车行驶到C处时,到村庄M,N的距离相等.(保留作图痕迹,不写作法)
【即学即练2】
4.如图,在△ABC中,∠C=90°,AC=3,BC=4,分别以A、B为圆心,AC为半径画弧,两弧分别交于E、F,直线EF交BC于点D,连接AD,则△ACD的周长等于( )
A.7B.8C.9D.
【即学即练3】
5.如图,在△ABC中,分别以点A和点B为圆心,以相同的长(大于)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接CD.若△CDB的面积为12,△ADE的面积为9,则四边形EDBC的面积为( )
A.15B.16C.18D.20
【即学即练4】
6.如图,两个三角形成轴对称,画出对称轴.
知识点03 用坐标表示轴对称
关于坐标轴对称的点的坐标特点:
点P(x,y)关于x轴对称的点的坐标为 。
点P(x,y)关于y轴对称的点的坐标为 。
关于x=m或y=m对称的点的坐标:
P(a,b)关于直线x=m对称的点的坐标为 。
P(a,b)关于直线y=m对称的点的坐标为 。
题型考点:根据坐标特点求坐标。
【即学即练1】
7.已知点A(a,4)与点B(﹣2,b)关于x轴对称,则a+b=( )
A.﹣6B.6C.2D.﹣2
【即学即练2】
8.已知点A(m,2021)与点B(2022,n)关于y轴对称,则m+n的值为( )
A.﹣1B.1C.4043D.﹣2022
【即学即练3】
9.已知点A(4,﹣3)和点B是坐标平面内的两个点,且它们关于直线x=2对称,则平面内点B的坐标为( )
A.(0,﹣3)B.(4,﹣9)C.(4,0)D.(﹣10,3)
【即学即练4】
10.如图,已知直线l经过点(0,﹣1)并且垂直于y轴,若点P(﹣3,2)与点Q(a,b)关于直线l对称,则a+b= .
题型01 轴对称与轴对称图形的作图与计算
【典例1】
如图所示,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(1,1)B(4,2)C(2,3).
(1)在图中画出△ABC关于x轴对称的图形△A1B1C1;
(2)在图中,若B2(﹣4,2)与点B关于一条直线成轴对称,则这条对称轴是 ,此时C点关于这条直线的对称点C2的坐标为 ;
(3)求△A1B1C1的面积.
【典例2】
如图,在由边长为1个单位的小正方形组成的网格中,三角形ABC的顶点均为格点(网格线的交点).
(1)作出三角形ABC关于直线MN的轴对称图形三角形A1B1C1;
(2)求三角形A1B1C1的面积;
(3)在直线MN上找一点P使得三角形BAC的面积等于三角形PAC的面积.
【典例3】
如图,在由边长为1个单位长度的小正方形组成的网格中,点A,B,C,D均为格点(网格线的交点).
(1)画出线段AB关于直线CD对称的线段A1B1;
(2)将线段AB向左平移2个单位长度,再向上平移1个单位长度,得到线段A2B2,画出线段A2B2;
(3)描出线段AB上的点M及直线CD上的点N,使得直线MN垂直平分AB.
【典例4】
如图,在正方形网格中,每个小正方形的边长都是1,每个小正方形的顶点叫做格点.网格中有一个格点△ABC(即三角形的顶点都在格点上).
(1)画出△ABC关于直线MN的对称图形(不写画法);
(2)若网格上的每个小正方形的边长为1,求△ABC的面积.
题型02 垂直平分线的作图
【典例1】
如图,在△ABC中,∠C=90°.用直尺和圆规在边BC上确定一点P,使点P到点A、点B的距离相等,则符合要求的作图痕迹是( )
A.B.
C.D.
【典例2】
如图,已知△ABC,请用尺规作图法在BC边上找一点D,使得点D到A、B两点距离相等.(不写作法,保留作图痕迹)
【典例3】
(1)图1是小正方形的边长均为1的方格纸,请你涂出一个图形(所有顶点都在格点上),使其满足如下条件:①图形的面积为7;②图形是轴对称图形.
(2)如图2,一条笔直的公路MN同一侧有两个村庄A和B,现准备在公路MN上修一个公共汽车站点P,使站点P到两个村庄A和B的距离相等.请你用尺规作图找出点P的位置,不写作法,保留作图痕迹.
【典例4】
如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要在∠AOB内部修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)
题型03 利用垂直平分线的作图痕迹解题
【典例1】
如图,在△ABC中,分别以A,C为圆心,大于AC长为半径作弧,两弧分别相交于M,N两点,作直线MN,分别交线段BC,AC于点D,E,若AE=3cm,△ABD的周长为10cm,则△ABC的周长为( )
A.13cmB.14cmC.15cmD.16cm
【典例2】
如图,△ABC中,∠B=90°,分别以点A和点C为圆心,以大于的长为半径作弧,两弧相交于点M和点N,作直线MN,分别交AB,AC于点E和点F.若BC=3,AB=9,则BE的长为( )
A.3B.4C.5D.6
【典例3】
如图,在Rt△ABC中,分别以B,C为圆心,大于的长为半径画弧,两弧交于点P,Q,作直线PQ,分别交BC,AC于点D,E,连接BE.若∠EBD=32°,则∠A的度数为( )
A.50°B.58°C.60°D.64°
【典例4】
如图,在△ABC中,分别以点A和点B为圆心,以相同的长(大于)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接CD.已知△CDE的面积比△CDB的面积小5,则△ADE的面积为( )
A.5B.4C.3D.2
题型04 关于坐标轴对称的点的坐标
【典例1】
点(3,﹣2)关于x轴的对称点是( )
A.(﹣3,﹣2)B.(3,2)C.(﹣3,2)D.(3,﹣2)
【典例2】
在平面直角坐标系中,点P(a,3)与点Q(﹣2,b)关于x轴对称,则a﹣b的值为( )
A.1B.﹣1C.5D.﹣5
【典例3】
已知点P(a,3)和点Q(4,b)关于x轴对称,则a+b的值为( )
A.1B.﹣1C.7D.﹣7
【典例4】
在平面直角坐标系中,点P(4,1)关于y轴对称的点的坐标是( )
A.(4,1)B.(﹣4,﹣1)C.(﹣4,1)D.(4,﹣1)
【典例5】
若点M(a,﹣1)与点N(﹣2,b)关于y轴对称,则(a+b)2022的值是( )
A.2022B.﹣2022C.1D.﹣1
【典例6】
已知点A(4,a﹣5)与点B(b﹣1,﹣3)关于y轴对称,则ab的值为( )
A.﹣6B.﹣8C.D.﹣
题型05 关于直线对称的点的坐标
【典例1】
点(2,5)关于直线x=1的对称点的坐标为 .
【典例2】
点P(﹣2,﹣4)与点Q(6,﹣4)的位置关系是( )
A.关于x轴对称B.关于y轴对称
C.关于直线x=2对称D.关于直线y=2对称
【典例3】
若点A(a,4)在第二象限,则点A关于直线m(直线m上各点的横坐标都是2)对称的点坐标是( )
A.(﹣a,4)B.(4﹣a,4)C.(﹣a﹣4,﹣4)D.(﹣a﹣2,﹣4)
【典例4】
点(1,2m﹣1)关于直线x=m的对称点的坐标是( )
A.(2m﹣1,1)B.(﹣1,2m﹣1)
C.(﹣1,1﹣2m)D.(2m﹣1,2m﹣1)
1.在平面直角坐标系中,点P(﹣3,4)关于y轴的对称点在( )
A.第一象限B.第二象限C.第三象限D.第四象限
2.如图,在3×3的正方形网格中有四个格点A、B、C、D,以其中一点为原点,网格线所在直线为坐标轴建立直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是( )
A.AB.BC.CD.D
3.已知:点A(m﹣1,3)与点B(2,n﹣1)关于x轴对称,则(m+n)的值为( )
A.0B.1C.﹣1D.3
4.如图,在△ABC中,∠B=30°,∠C=50°,请观察尺规作图的痕迹(D,E,F分别是连线与△ABC边的交点),则∠DAE的度数是( )
第4题 第5题
A.25°B.30°C.35°D.40°
5.如图,在△ABC中,结合尺规作图的痕迹,已知AD=2cm,△ABE的周长为14cm,则△ABC的周长是( )
A.17cmB.18cmC.19cmD.20cm
6.如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,下列结论错误的是( )
A.AD=BDB.BD=CDC.∠A=∠BEDD.∠ECD=∠EDC
7.剪纸艺术是最古老的中国民间艺术之一,很多剪纸作品体现了数学中的对称美.如图,蝴蝶剪纸是一幅轴对称图形,将其放在平面直角坐标系中,如果图中点E的坐标为(m,1),其关于y轴对称的点F的坐标(2,n),则(m+n)2022的值为( )
A.1B.﹣1C.32022D.0
8.如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若点C坐标是(6,2),则经过第2022次变换后,点C的对应点的坐标为( )
A.(﹣6,﹣2)B.(6,﹣2)C.(﹣6,2)D.(6,2)
9.把点A(a+2,a﹣1)向上平移3个单位,所得的点与点A关于x轴对称,则a的值为 .
10.如图,在△ABC中,AB=10,BC=6,AC=8,分别以点A,点B为圆心,大于的长为半径画弧,两弧相交于点M,N,作直线MN交AC于点D,则线段CD的长为 .
11.如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,大于的长为半径画弧,两弧相交于M,N两点;②作直线MN交AB于点D,连接CD.若∠B=24°,则∠CDA的度数为 .
12.已知点E(x0,y0),F(x2,y2),点M(x1,y1)是线段EF的中点,则,.在平面直角坐标系中有三个点A(1,﹣1),B(﹣1,﹣1),C(0,1),点P(0,2)关于A的对称点为P1(即P,A,P1三点共线,且PA=P1A),P1关于B的对称点为P2,P2关于C的对称点为P3,按此规律继续以A,B,C为对称点重复前面的操作,依次得到P4,P5,P6,则点P2023的坐标是 (2,﹣4) .
13.如图所示,由每一个边长均为1的小正方形构成的正方形网格中,△ABC的顶点A,B,C均在格点上(小正方形的顶点为格点),利用网格画图,(保留必要的画图痕迹)
(1)在直线AC上找一点P,使得点P到点B,C的距离相等;
(2)在图中找一点O,使得OA=OB=OC;
(3)在(1)、(2)小题的基础上,请在直线AB上确定一点M,使MP+MO的值最小.
14.如图,在平面直角坐标系xOy中,A(﹣3,4),B(﹣4,1),C(﹣1,1).
(1)点A关于y轴的对称点的坐标为 (3,4) ;
(2)请画出△ABC关于x轴对称的图形△A1B1C1;
(3)将△ABC向右平移2个单位,向下平移1个单位,它的像是△A2B2C2,请写出△A2B2C2的顶点坐标.
15.已知,如图,在△ABC中,AD是∠BAC的平分线,且AD=AB,过点C作AD的垂线,交AD的延长线于点H.以直线CH为对称轴作点A的对称点P,连接CP
(1)依题意补全图形;
(2)直接写出AB与CP的位置关系;
(3)用等式表示线段AH与AB+AC之间的数量关系,并证明.
课程标准
学习目标
①轴对称与轴对称图形作图
②画对称轴
③用坐标表示轴对称
掌握轴对称与轴对称图形的作图,能够熟练的作出轴对称与轴对称图形的另一半。
掌握对称轴的画法,能够数量画出轴对称与轴对称图形的对称轴。
掌握点关于坐标轴对称以及关于特殊直线对称的对称特点,熟练应用其应用。
相关学案
这是一份初中数学人教版八年级上册第十三章 轴对称13.1 轴对称13.1.1 轴对称精品导学案,文件包含第09讲轴对称-教师版2024年八上数学同步精品讲义人教版docx、第09讲轴对称-学生版2024年八上数学同步精品讲义人教版docx等2份学案配套教学资源,其中学案共50页, 欢迎下载使用。
这是一份初中数学人教版七年级上册4.3.1 角精品学案,文件包含第18讲角-教师版2024年七上数学同步精品讲义人教版docx、第18讲角-学生版2024年七上数学同步精品讲义人教版docx等2份学案配套教学资源,其中学案共49页, 欢迎下载使用。
这是一份人教版七年级上册第二章 整式的加减2.2 整式的加减精品导学案及答案,文件包含第09讲整式的加减-教师版2024年七上数学同步精品讲义人教版docx、第09讲整式的加减-学生版2024年七上数学同步精品讲义人教版docx等2份学案配套教学资源,其中学案共33页, 欢迎下载使用。