综合解析人教版数学八年级上册期末综合复习试题 卷(Ⅰ)(解析版)
展开
这是一份综合解析人教版数学八年级上册期末综合复习试题 卷(Ⅰ)(解析版),共21页。试卷主要包含了下列式子等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 35分)
一、单选题(5小题,每小题3分,共计15分)
1、计算的结果是( ).
A.B.C.D.以上答案都不对
2、如图,△ABC和△EDF中,∠B=∠D=90°,∠A=∠E,点B,F,C,D在同一条直线上,再增加一个条件,不能判定△ABC≌△EDF的是( )
A.AB=EDB.AC=EF
C.AC∥EFD.BF=DC
3、关于x的分式方程3=0有解,则实数m应满足的条件是( )
A.m=﹣2B.m≠﹣2C.m=2D.m≠2
4、如图,E是∠AOB平分线上的一点.于点C,于点D,连结,则( )
A.50°B.45°C.40°D.25°
5、下列式子:,,,,,其中分式有( )
A.1个B.2个C.3个D.4个
二、多选题(5小题,每小题4分,共计20分)
1、下列多项式乘法中可以用平方差公式计算的是( )
A.(﹣a+b)(a+b)B.(-x+2)(-2-x)
C.(+y)(y﹣)D.(x﹣2)(x+1)
2、如图,小明在学了尺规作图后,作了一个图形,其作图步骤是:①作线段,分别以点、为圆心,以长为半径画弧,两弧相交于点、;②连接、,作直线,且与相交于点.则下列说法正确的是( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.是等边三角形B.
C.D.
3、若等腰三角形一腰上的高与另一腰的夹角的度数为,则顶角的度数是( )
A.B.C.D.
4、已知关于x的分式方程无解,则m的值为( )
A.0B.C.D.
5、下列各式,能用平方差公式计算的是( )
A.(x﹣2y)(2y+x)B.(x﹣2y)(﹣x﹣2y)
C.(﹣x﹣2y)(x+2y)D.(x﹣2y)(﹣x+2y)
第Ⅱ卷(非选择题 65分)
三、填空题(5小题,每小题5分,共计25分)
1、如果分式有意义,那么x的取值范围是 _____.
2、把分式化为最简分式为________.
3、如图,,若,则________.
4、在平面直角坐标系中,点与点关于轴对称,则的值是_____.
5、(1)如图1所示,_________;
(2)如果把图1称为二环三角形,它的内角和为;图2称为二环四边形,它的内角和为,则二环四边形的内角和为__________;二环五边形的内角和为__________;二环n边形的内角和为_________.
四、解答题(5小题,每小题8分,共计40分)
1、如图,在四边形ABCD中,,∠BAD=90°,点E在AC上,EC=ED=DA.求∠CAB的度数.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
2、先化简,再求值:,其中x取不等式组的适当整数解.
3、如图所示,AD,CE是△ABC的两条高,AB=6cm,BC=12cm,CE=9cm.
(1)求△ABC的面积;
(2)求AD的长.
4、解分式方程:.
5、如图是一个长为a,宽为b的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.
(1)用含字母a,b的代数式表示矩形中空白部分的面积;
(2)当a=3,b=2时,求矩形中空白部分的面积.
-参考答案-
一、单选题
1、A
【解析】
【详解】
原式=
=
=
故选A
2、C
【解析】
【分析】
根据全等三角形的判定方法即可判断.
【详解】
A. AB=ED,可用ASA判定△ABC≌△EDF;
B. AC=EF,可用AAS判定△ABC≌△EDF;
C. AC∥EF,不能用AAA判定△ABC≌△EDF,故错误;
D. BF=DC,可用AAS判定△ABC≌△EDF;
故选C.
【考点】
此题主要考查全等三角形的判定,解题的关键是熟知全等三角形的判定方法.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
3、B
【解析】
【分析】
解分式方程得:即,由题意可知,即可得到.
【详解】
解:
方程两边同时乘以得:,
∴,
∵分式方程有解,
∴,
∴,
∴,
∴,
故选B.
【考点】
本题主要考查了分式方程的解,熟练掌握分式方程的解法,理解分式方程有意义的条件是解题的关键.
4、A
【解析】
【分析】
根据角平分线的性质得到ED=EC,得到∠EDC=,求出,利用三角形内角和定理求出答案.
【详解】
解:∵OE是的平分线,,,
∴ED=EC,,
∴∠EDC=,
∴,
∴,
故选:A.
【考点】
此题考查了角平分线的性质定理,等腰三角形的性质,三角形内角和定理,熟记角平分线的性质定理是解题的关键.
5、B
【解析】
【分析】
根据分母中含有字母的式子是分式,可得答案.
【详解】
解:,的分母中含有字母,属于分式,共有2个.
故选:B.
【考点】
本题考查了分式的定义,熟悉相关性质,注意是常数,是解题的关键.
二、多选题
1、ABC
【解析】
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
根据平方差公式:进行逐一判断即可.
【详解】
解:A、,符合平方差公式的形式,故符合题意;
B、,符合平方差公式的形式,故符合题意;
C、,符合平方差公式的形式,故符合题意;
D、,不符合平方差公式的形式,故不符合题意;
故选ABC.
【考点】
本题主要考查了平方差公式,解题的关键在于能够熟练掌握平方差公式.
2、ABC
【解析】
【分析】
根据等边三角形的判定和性质,线段垂直平分线的性质一一判断即可.
【详解】
解:由作图可知:AB=BC=AC,
∴△ABC是等边三角形,故A选项正确
∵等边三角形三线合一,
由作图知,CD是线段AB的垂直平分线,
∴,故B选项正确,
∴,,故C选项正确,D选项错误.
故选:ABC.
【考点】
此题考查了作图-基本作图,等边三角形的判定和性质,线段垂直平分线的性质,解题的关键是理解题意,灵活运用所学知识解决问题.
3、BC
【解析】
【分析】
本题要分情况讨论.当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况.
【详解】
解:此题要分情况讨论:如图,当等腰三角形的顶角是钝角时,
由题意得:
根据三角形的一个外角等于与它不相邻的两个内角的和,
即可求得顶角是90°+20°=110°;
如图,当等腰三角形的顶角是锐角时,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
由题意得:
故顶角是90°-20°=70°.
故顶角的度数为110°或70°.
故选:.
【考点】
此题考查了等腰三角形的性质,注意此类题的两种情况.其中考查了直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和.
4、ABD
【解析】
【分析】
先将分式方程化为整式方程 ,再由原分式方程无解,可得 或 ,即可求解.
【详解】
解:
化为整式方程,得: ,
即 ,
∵关于x的分式方程无解,
∴ 或 ,
当时, ,
当,即或 时,
或 ,
解得: 或 .
故选:ABD.
【考点】
本题主要考查了分式方程无解的问题,理解并掌握分式方程无解分为两种情况:分式方程产生增根;整式方程本身无解是解题的关键.
5、AB
【解析】
【分析】
根据平方差公式的形式判断即可;
【详解】
(x﹣2y)(2y+x),能用平方差公式,故A正确;
(x﹣2y)(﹣x﹣2y),能用平方差公式,故B正确;
(﹣x﹣2y)(x+2y),不能用平方差公式,故C错误;
(x﹣2y)(﹣x+2y),不能用平方差公式,故D错误;
故选AB.
【考点】
本题主要考查了平方差公式的判断,准确分析判断是解题的关键.
三、填空题
1、x≠﹣1
【解析】
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
根据分式有意义的条件分母不为0,即可解答.
【详解】
若分式有意义,则,
解得:.
故答案为:.
【考点】
本题考查使分式有意义的条件.掌握分式的分母不能为0是解题关键.
2、
【解析】
【分析】
根据分式的性质,进行约分即可,最简分式定义,一个分式的分子与分母没有非零次的公因式或公因数时叫最简分式.
【详解】
故答案为:
【考点】
本题考查了最简分式,掌握分式的约分,因式分解是解题的关键.
3、100
【解析】
【分析】
先根据EC=EA.∠CAE=40°得出∠C=40°,再由三角形外角的性质得出∠AED的度数,利用平行线的性质即可得出结论.
【详解】
∵EC=EA,∠CAE=40°,
∴∠C=∠CAE=40°,
∵∠DEA是△ACE的外角,
∴∠AED=∠C+∠CAE=40°+40°=80°,
∵AB∥CD,
∴∠BAE+∠AED=180°
∴∠BAE =100°.
【考点】
本题考查的是等边对等角,三角形的外角,平行线的性质,熟知两直线平行同旁内角互补是解答此题的关键.
4、4
【解析】
【分析】
根据关于x轴对称的两点的横坐标相同,纵坐标互为相反数求得a、b的值即可求得答案.
【详解】
点与点关于轴对称,
,,
则a+b的值是:,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
故答案为.
【考点】
本题考查了关于x轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解此类问题的关键.
5、 360° 720° 1080°
【解析】
【分析】
(1)结合题意,根据对顶角和三角形内角和的知识,得,再根据四边形内角和的性质计算,即可得到答案;
(2)连接,交于点M,根据三角形内角和和对顶角的知识,得;结合五边形内角和性质,得;结合(1)的结论,根据数字规律的性质分析,即可得到答案.
【详解】
(1)如图所示,连接AD,交于点M
∵,,
∴;
故答案为:360°
(2)如图,连接,交于点M
∴,
∵
∴
∴
∵
∴
∴
∴二环四边形的内角和为:
∵二环三角形的内角和为:
二环四边形的内角和为:
∴二环五边形的内角和为:
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴二环n边形的内角和为:
故答案为:,,.
【考点】
本题考查了多边形内角和、对顶角、数字规律的知识;解题的关键是熟练掌握三角形内角和、多边形内角和、数字规律的性质,从而完成求解.
四、解答题
1、
【解析】
【分析】
根据等腰三角形的性质,等边对等角,又利用平行线的性质可得角度之间的关系,从而可以求解.
【详解】
∵DE=CE,
∴∠ECD=∠CDE.
∵∠DEA是△CDE的外角,
∴∠DEA=∠ECD+∠CDE=2∠ECD.
∵DE=AD,
∴∠DEA=∠DAE,
∴∠DAE=2∠ECD.
∵,
∴∠CAB=∠DCA,
∴∠DAE=2∠CAB.
∵∠BAD=90°,
∴,
故答案为:.
【考点】
本题主要考查等腰三角形和平行线的性质,利用等腰三角形和平行线的性质得到角之间的关系是解题的关键.
2、,-3或
【解析】
【分析】
先进行分式去括号,结合完全平方式和因式分解进行分式的混合运算,得到化简后的分式.再解不等式组,得出x的取值范围,且注意使原分式有意义的条件,即可得出x的具体值,将其带入化简后的分式即可.
【详解】
原式
解不等式组得
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
其整数解为-1,0,1,2,3
由题得:,
∴x可以取0或2分
当时,原式
(当时,原式)
【考点】
本题考查分式的化简求值,和解不等式组.解题时需注意使分式有意义的条件.
3、(1)27;(2)4.5
【解析】
【分析】
(1)根据三角形面积公式进行求解即可;
(2)利用面积法进行求解即可.
【详解】
解:(1)由题意得:.
(2)∵,
∴.
解得.
【考点】
本题主要考查了与三角形高有关的面积求解,解题的关键在于能够熟练掌握三角形面积公式.
4、
【解析】
【分析】
分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】
方程,
,
,
,
经检验是分式方程的解,
∴原分式方程的解为.
【考点】
本题考查了解分式方程.利用了转化的思想,解分式方程要注意检验.
5、(1)S=ab﹣a﹣b+1;(2)矩形中空白部分的面积为2;
【解析】
【分析】
(1)空白区域面积=矩形面积-两个阴影平行四边形面积+中间重叠平行四边形面积;
(2)将a=3,b=2代入(1)中即可;
【详解】
(1)S=ab﹣a﹣b+1;
(2)当a=3,b=2时,S=6﹣3﹣2+1=2;
【考点】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
本题考查阴影部分面积,平行四边形面积,代数式求值;能够准确求出阴影部分面积是解题的关键.
相关试卷
这是一份综合解析-人教版数学八年级上册期末综合复习试题(解析卷),共21页。试卷主要包含了下列命题的逆命题一定成立的是等内容,欢迎下载使用。
这是一份综合解析人教版数学八年级上册期末综合复习试题 卷(Ⅰ)(解析卷),共21页。
这是一份综合解析-人教版数学八年级上册期末综合复习试题 B卷(解析卷),共21页。