搜索
    上传资料 赚现金
    英语朗读宝

    综合解析人教版数学八年级上册期中测评试题 A卷(含答案及详解)

    综合解析人教版数学八年级上册期中测评试题 A卷(含答案及详解)第1页
    综合解析人教版数学八年级上册期中测评试题 A卷(含答案及详解)第2页
    综合解析人教版数学八年级上册期中测评试题 A卷(含答案及详解)第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    综合解析人教版数学八年级上册期中测评试题 A卷(含答案及详解)

    展开

    这是一份综合解析人教版数学八年级上册期中测评试题 A卷(含答案及详解),共29页。
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 35分)
    一、单选题(5小题,每小题3分,共计15分)
    1、如图,AD是的角平分线,,垂足为F,,和的面积分别为60和35,则的面积为
    A.25B.C.D.
    2、如图,Rt△ACB中,∠ACB=90°,△ACB的角平分线AD,BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°; ②AD=PF+PH;③DH平分∠CDE;④S四边形ABDE=S△ABP;⑤S△APH=S△ADE,其中正确的结论有( )个
    A.2B.3C.4D.5
    3、如图,,若,,则的度数为( )
    A.80°B.35°C.70°D.30°
    4、若过六边形的一个顶点可以画条对角线,则的值是( )
    A.1B.2C.3D.4
    5、如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=( ).
    A.40°B.50°
    C.60°D.75°
    二、多选题(5小题,每小题4分,共计20分)
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    1、下列每组中的两个图形,不是全等图形的是 ( )
    A.B.
    C.D.
    2、如图,O是直线上一点,A,B分别是,平分线上的点,于点E,于点C,于点D,则下列结论中,正确的是( )
    A.B.
    C.与互余的角有两个D.O是的中点
    3、若一个三角形的两边长分别为5和7,则该三角形的周长可能是( )
    A.12B.16C.19D.25
    4、一幅美丽的图案,在其顶点处由四个正多边形镶嵌而成,其中三个分别为正三角形、正四边形、正六边形,则另一个不能为( )
    A.正六边形B.正五边形C.正四边形D.正三角形
    5、在自习课上,小红为了检测同学们的学习效果,提出如下四种说法,其中错误的说法是( )
    A.三角形有且只有一条中线
    B.三角形的高一定在三角形内部
    C.三角形的两边之差大于第三边
    D.三角形按边分类可分为等腰三角形和不等边三角形
    第Ⅱ卷(非选择题 65分)
    三、填空题(5小题,每小题5分,共计25分)
    1、已知三角形的三边长为4、x、11,化简______.
    2、如图,若△ABC≌△A1B1C1,且∠A=110°,∠B=40°,则∠C1=______°.
    3、如图,是一个中心对称图形,A为对称中心,若,则________,________.
    4、如图,中,,,D为延长线上一点,,且,与的延长线交于点P,若,则__________.
    5、从六边形的一个顶点出发,可以画出条对角线,它们将六边形分成个三角形.边形没有对角线,则的值为______.
    四、解答题(5小题,每小题8分,共计40分)
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    1、如图,已知△ABC.
    求作:BC边上的高与内角∠B的角平分线的交点.
    2、已知△ABC与ΔADE均为等腰直角三角形,且∠BAC=∠DAE=90°,点D在直线BC上.
    (1)如图1,当点D在CB延长线上时,求证:BE⊥CD;
    (2)如图2,当D点不在直线BC上时, BE、CD相交于M,
    ①直接写出∠CME的度数;
    ②求证:MA平分∠CME
    3、如图1,点P、Q分别是边长为4cm的等边三角形ABC的边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s.
    (1)连接AQ、CP交于点M,则在P,Q运动的过程中,证明≌;
    (2)会发生变化吗?若变化,则说明理由,若不变,则求出它的度数;
    (3)P、Q运动几秒时,是直角三角形?
    (4)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则变化吗?若变化说明理由,若不变,则求出它的度数。
    4、阅读材料并完成习题:
    在数学中,我们会用“截长补短”的方法来构造全等三角形解决问题.请看这个例题:如图1,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,若AC=2cm,求四边形ABCD的面积.
    解:延长线段CB到E,使得BE=CD,连接AE,我们可以证明△BAE≌△DAC,根据全等三角形的性质得AE=AC=2, ∠EAB=∠CAD,则∠EAC=∠EAB+∠BAC=∠DAC+∠BAC=∠BAD=90°,得S四边形ABCD=S△ABC+S△ADC=S△ABC+S△ABE=S△AEC,这样,四边形ABCD的面积就转化为等腰直角三角形EAC面积.
    (1)根据上面的思路,我们可以求得四边形ABCD的面积为 cm2.
    (2)请你用上面学到的方法完成下面的习题.

    如图2,已知FG=FN=HM=GH+MN=2cm,∠G=∠N=90°,求五边形FGHMN的面积.
    5、在中,BE,CD为的角平分线,BE,CD交于点F.
    (1)求证:;
    (2)已知.
    ①如图1,若,,求CE的长;
    ②如图2,若,求的大小.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    -参考答案-
    一、单选题
    1、D
    【解析】
    【分析】
    过点D作DH⊥AC于H,根据角平分线上的点到角的两边距离相等可得DF=DH,再利用“HL”证明Rt△ADF和Rt△ADH全等,Rt△DEF和Rt△DGH全等,然后根据全等三角形的面积相等列方程求解即可.
    【详解】
    如图,过点D作于H,
    是的角平分线,,

    在和中,,
    ≌,

    在和中,
    ≌,

    和的面积分别为60和35,

    =12.5,
    故选D.
    【考点】
    本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,熟记掌握相关性质、正确添加辅助线构造出全等三角形是解题的关键.
    2、B
    【解析】
    【分析】
    ①正确.利用三角形内角和定理以及角平分线的定义即可解决问题.
    ②正确.证明△ABP≌△FBP,推出PA=PF,再证明△APH≌△FPD,推出PH=PD即可解决问题.
    ③错误.利用反证法,假设成立,推出矛盾即可.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ④错误,可以证明S四边形ABDE=2S△ABP.
    ⑤正确.由DH∥PE,利用等高模型解决问题即可.
    【详解】
    解:在△ABC中,AD、BE分别平分∠BAC、∠ABC
    ∵∠ACB=90°
    ∴∠A+∠B=90°
    又∵AD、BE分别平分∠BAC、∠ABC
    ∴∠BAD+∠ABE=(∠A+∠B)=45°
    ∴∠APB=135°,故①正确
    ∴∠BPD=45°
    又∵PF⊥AD
    ∴∠FPB=90°+45°=135°
    ∴∠APB=∠FPB
    又∵∠ABP=∠FBP
    BP=BP
    ∴△ABP≌△FBP(ASA)
    ∴∠BAP=∠BFP,AB=FB,PA=PF
    在△APH和△FPD中
    ∴△APH≌△FPD(ASA)
    ∴PH=PD
    ∴AD=AP+PD=PF+PH.故②正确
    ∵△ABP≌△FBP,△APH≌△FPD
    ∴S△APB=S△FPB,S△APH=S△FPD,PH=PD
    ∵∠HPD=90°
    ∴∠HDP=∠DHP=45°=∠BPD
    ∴HD∥EP
    ∴S△EPH=S△EPD
    ∴S△APH=S△AED,故⑤正确
    ∵S四边形ABDE=S△ABP+S△AEP+S△EPD+S△PBD
    =S△ABP+(S△AEP+S△EPH)+S△PBD
    =S△ABP+S△APH+S△PBD
    =S△ABP+S△FPD+S△PBD
    =S△ABP+S△FBP
    =2S△ABP,故④不正确
    若DH平分∠CDE,则∠CDH=∠EDH
    ∵DH∥BE
    ∴∠CDH=∠CBE=∠ABE
    ∴∠CDE=∠ABC
    ∴DE∥AB,这个显然与条件矛盾,故③错误
    故选B.
    【考点】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    本题考查了角平分线的判定与性质,三角形全等的判定方法,三角形内角和定理,三角形的面积等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
    3、D
    【解析】
    【分析】
    根据全等三角形的性质即可求出∠E.
    【详解】
    解:∵△ABC≌△ADE,∠C=30°,
    ∴∠E=∠C=30°,
    故选:D.
    【考点】
    本题考查了全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.
    4、C
    【解析】
    【分析】
    根据从一个n边形一个顶点出发,可以连的对角线的条数是n-3进行计算即可.
    【详解】
    解:6-3=3(条).
    答:从六边形的一个顶点可引出3条对角线.
    故选:C.
    【考点】
    本题考查了多边形的对角线,解答此类题目可以直接记忆:一个n边形一个顶点出发,可以连的对角线的条数是n-3.
    5、B
    【解析】
    【分析】
    根据题意易证,则可由∠2=∠ACB=90°-∠1,求得∠2的值.
    【详解】
    ∵∠B=∠D=90°,
    ∴在Rt△ABC和Rt△ADC中,
    ∴△ABC≌△ADC (HL),
    ∴.
    故选B.
    【考点】
    本题考查三角形全等的判定和性质.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
    二、多选题
    1、ABD
    【解析】
    【分析】
    根据全等形的定义:能够完全重合的两个图形是全等图形,据此可得正确答案.
    【详解】
    解:A、大小不同,不能重合,不是全等图形,符合题意;
    B、大小不同,不能重合,不是全等图形,符合题意;
    C、大小相同,形状相同,是全等图形,不符合题意;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    D、正五边形和正六边形不是全等图形,符合题意;
    故选:ABD.
    【考点】
    本题考查了全等图形的识别,熟知全等图形的定义是解本题的关键.
    2、ABD
    【解析】
    【分析】
    根据角平分线的性质得,,等量代换得出,故A选项正确;根据角平分线性质得 ,,又因为 即可得,故B选项正确;根据互余的定义和性质可得与 互余的角有4个,故C选项错误;因为OC=OE=OD,所以点O是CD 的中点,故D选项正确;即可得出结果.
    【详解】
    解:∵A,B分别是,的角平分线上的点,
    ∴,,
    ∵,
    ∴,
    故A选项说法正确,符合题意;
    ∵A,B分别是,的角平分线上的点,
    ∴,,
    又∵,
    ∴,
    故B选项说法正确,符合题意;
    ∵,
    ∴与互余,
    ∵,
    ∴,
    ∴与互余,
    ∵,


    ∴,
    ∴与互余,
    ∵,


    ∴,
    ∴与互余,
    综上,与互余的角有4个,
    故C选项说法错误,不符合题意;
    ∵OC=OE=OD,
    ∴点O是CD 的中点,
    故D选项说法正确,符合题意;
    故选ABD.
    【考点】
    本题考查了角平分线的性质,邻补角,余角的性质,线段的中点,解题的关键是掌握角平分线的性质,邻补角,余角的性质,线段的中点.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    3、BC
    【解析】
    【分析】
    先根据三角形三条边的关系求出第三条边的取值范围,进而求出周长的取值范围,从而可的求出符合题意的选项.
    【详解】
    解:∵三角形的两边长分别为5和7,
    ∴7-5=2

    相关试卷

    综合解析人教版数学八年级上册期中测评试题 卷(Ⅲ)(含答案详解):

    这是一份综合解析人教版数学八年级上册期中测评试题 卷(Ⅲ)(含答案详解),共23页。

    综合解析人教版数学八年级上册期中测评试题 卷(Ⅲ)(含答案及详解):

    这是一份综合解析人教版数学八年级上册期中测评试题 卷(Ⅲ)(含答案及详解),共25页。

    综合解析-人教版数学八年级上册期中测评试题 卷(Ⅱ)(含答案及详解):

    这是一份综合解析-人教版数学八年级上册期中测评试题 卷(Ⅱ)(含答案及详解),共26页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map