年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    综合解析-人教版数学八年级上册期中定向测评试题 卷(Ⅰ)(详解版)

    综合解析-人教版数学八年级上册期中定向测评试题 卷(Ⅰ)(详解版)第1页
    综合解析-人教版数学八年级上册期中定向测评试题 卷(Ⅰ)(详解版)第2页
    综合解析-人教版数学八年级上册期中定向测评试题 卷(Ⅰ)(详解版)第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    综合解析-人教版数学八年级上册期中定向测评试题 卷(Ⅰ)(详解版)

    展开

    这是一份综合解析-人教版数学八年级上册期中定向测评试题 卷(Ⅰ)(详解版),共23页。试卷主要包含了如图,已知.能直接判断的方法是等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 35分)
    一、单选题(5小题,每小题3分,共计15分)
    1、若长度分别是a、3、5的三条线段能组成一个三角形,则a的值可以是( )
    A.1B.2C.4D.8
    2、如图,已知图中的两个三角形全等,则∠α的度数是( )
    A.72°B.60°C.58°D.50°
    3、将一副直角三角板按如图所示的位置摆放,使得它们的直角边互相垂直,则的度数是( )
    A.B.C.D.
    4、正多边形通过镶嵌能够密铺成一个无缝隙的平面,下列组合中不能镶嵌成一个平面的是( )
    A.正三角形和正方形B.正三角形和正六边形
    C.正方形和正六边形D.正方形和正八边形
    5、如图,已知.能直接判断的方法是( )
    A.B.C.D.
    二、多选题(5小题,每小题4分,共计20分)
    1、在自习课上,小红为了检测同学们的学习效果,提出如下四种说法,其中错误的说法是( )
    A.三角形有且只有一条中线
    B.三角形的高一定在三角形内部
    C.三角形的两边之差大于第三边
    D.三角形按边分类可分为等腰三角形和不等边三角形
    2、若将一副三角板按如图所示的方式放置,则下列结论正确的是( )
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    A.∠1=∠2B.如果∠2=30°,则有AC∥DE
    C.如果∠2=30°,则有BC∥ADD.如果∠2=30°,必有∠4=∠C
    3、用下列一种正多边形可以拼地板的是( )
    A.正三角形B.正六边形C.正八边形D.正十二边形
    4、一幅美丽的图案,在其顶点处由四个正多边形镶嵌而成,其中三个分别为正三角形、正四边形、正六边形,则另一个不能为( )
    A.正六边形B.正五边形C.正四边形D.正三角形
    5、下列说法中,正确的是( )
    A.用同一张底片冲出来的10张五寸照片是全等形;
    B.我国国旗上的四颗小五角星是全等形;
    C.所有的正六边形是全等形
    D.面积相等的两个直角三角形是全等形.
    第Ⅱ卷(非选择题 65分)
    三、填空题(5小题,每小题5分,共计25分)
    1、已知三角形的三边长为4、x、11,化简______.
    2、如图,两根旗杆间相距20米,某人从点B沿BA走向点A,一段时间后他到达点M,此时他分别仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM.已知旗杆BD的高为12米,该人的运动速度为2米/秒,则这个人运动到点M所用时间是__________秒.
    3、我们定义:一个三角形最小内角的角平分线将这个三角形分割得到的两个三角形它们的面积之比称为“最小角割比Ω”(),那么三边长分别为7,24,25的三角形的最小角割比Ω是______.
    4、如图,是中的角平分线,于点,于点,,,,则长是_____.
    5、如图所示,AD是△ABC中BC边上的中线,若AB=2,AC=6,则AD的取值范围是__________
    四、解答题(5小题,每小题8分,共计40分)
    1、已知:如图,△ABC是任意一个三角形,求证:∠A+∠B+∠C=180°.
    2、如图,AD,CE是△ABC的两条高.已知AD=5,CE=4.5,AB=6.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (1)求△ABC的面积;
    (2)求BC的长.
    3、如图,AD是∠BAC的角平分线,DE⊥AB,DF⊥AC,BD=CD.求证:EB=FC.
    4、如图,在△ABC和△ADE中,AB=AD,∠B=∠D,∠1=∠2.
    求证:BC=DE.
    5、如图(1)所示的图形,像我们常见的学习用品——圆规.我们不妨把这样图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:
    (1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;
    (2)请你直接利用以上结论,解决以下三个问题:
    ①如图(2),把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、图(1)XZ恰好经过点B、C,若∠A=50°,则∠ABX+∠ACX =__________°;
    ②如图(3)DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE的度数;(写出解答过程)
    ③如图(4),∠ABD,∠ACD的10等分线相交于点G1、G2、G9,若∠BDC=140°,∠BG1C=77°,则∠A的度数=__________°.
    -参考答案-
    一、单选题
    1、C
    【解析】
    【分析】
    根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边,求出a的取值范围即可得解.
    【详解】
    根据三角形的三边关系得,即,则选项中4符合题意,
    故选:C.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【考点】
    本题主要考查了三角形的三边关系,熟练掌握相关不等关系是解决本题的关键.
    2、D
    【解析】
    【分析】
    根据∠α是a、c边的夹角,50°的角是a、c边的夹角,然后根据两个三角形全等写出即可.
    【详解】
    解:∵∠α是a、c边的夹角,50°的角是a、c边的夹角,
    又∵两个三角形全等,
    ∴∠α的度数是50°.
    故选:D.
    【考点】
    本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解答本题的关键.全等三角形的对应角相等,对应边相等.对应边的对角是对应角,对应角的对边是对应边.
    3、C
    【解析】
    【分析】
    根据题意求出、,根据对顶角的性质、三角形的外角性质计算即可.
    【详解】
    由题意得,,

    由三角形的外角性质可知,,
    故选C.
    【考点】
    本题考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.
    4、C
    【解析】
    【分析】
    由正多边形的内角拼成一个周角进行判断,ax+by=360°(a、b表示多边形的一个内角度数,x、y表示多边形的个数).
    【详解】
    解:A、∵正三角形和正方形的内角分别为60°、90°,3×60°+2×90°=360°,
    ∴正三角形和正方形可以镶嵌成一个平面,故A选项不符合题意;
    B、∵正三角形和正六边形的内角分别为60°、120°,2×60°+2×120°=360°,或4×60°+1×120°=360°,
    ∴正三角形和正六边形可以镶嵌成一个平面,故B选项不符合题意;
    C、∵正方形和正六边形的内角分别为90°、120°,2×90°+1×120°=300°<360°且3×90°+1×120°=390°>360°,
    ∴正方形和正六边形不能镶嵌成一个平面,故C选项符合题意;
    D、正方形和正八边形的内角分别为90°、135°,1×90°+2×135°=360°,
    ∴正方形和正八边形可以镶嵌成一个平面,故D选项不符合题意;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    故选:C.
    【考点】
    本题主要考查了平面镶嵌,两种或两种以上几何图形向前成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.
    5、A
    【解析】
    【分析】
    根据三角形全等的判定定理解答.
    【详解】
    在△ABC和△DCB中,
    ,
    ∴(SAS),
    故选:A.
    【考点】
    此题考查全等三角形的判定定理:SSS、SAS、ASA、AAS、HL,根据已知条件找到全等所需的对应相等的边或角是解题的关键.
    二、多选题
    1、ABC
    【解析】
    【分析】
    三角形有三条中线对①进行判断;钝角三角形三条高,有两条在三角形外部,对②进行判断;根据三角形三边的关系对③进行判断;根据三角形的分类对④进行判断.
    【详解】
    解:A.三角形有3条中线,选项A的说法是错误的;
    B.三角形的高不一定在三角形内部,选项B的说法是错误的;
    C.三角形的两边之差小于第三边,选项C的说法是错误的;
    D.三角形按边分类可分为等腰三角形和不等边三角形是正确的.
    故答案为:ABC.
    【考点】
    本题考查了三角形的有关概念,属于基础题型.要注意等腰三角形与等边三角形两个概念的区别,掌握三角形有三条中线;钝角三角形三条高,有两条在三角形外部,三角形三边的关系;三角形的分类是解题关键.
    2、BD
    【解析】
    【分析】
    根据两种三角形的各角的度数,利用平行线的判定与性质结合已知条件对各个结论逐一验证,即可得出答案.
    【详解】
    解:∵∠CAB=∠DAE=90°,
    ∴∠1=∠3,故A错误.
    ∵∠2=30°,
    ∴∠1=∠3=60°
    ∴∠CAD=90°+60°=150°,

    ∴∠D+∠CAD=180°,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴AC∥DE,故B正确,
    ∵∠2=30°,
    ∴∠1=∠3=60°,
    ∵ ,
    ∴,
    不平行, 故C错误,
    ∵∠2=30°,
    ∴∠1=∠3=60°,

    由三角形的内角和定理可得:

    ∴∠4=45°,
    ∴,
    故D正确.
    故选:B,D
    【考点】
    此题考查平行线的判断,三角形的内角和定理的应用,解题关键在于根据三角形的内角和来进行计算.
    3、AB
    【解析】
    【分析】
    分别求出各个正多边形的每个内角的度数,结合镶嵌的条件即可求出答案.
    【详解】
    解:A、 正三边形的一个内角度数为180°÷3=6°,是360°的约数,可以拼地板,符合题意;
    B、正六边形的每个内角是120°,能整除360°,可以拼地板.符合题意;
    C. 正八边形的一个内角度数为(8-2)×180°÷8=135°,不是360°的约数,不可以拼地板,不符合题意;
    D.正十二边形的一个内角度数为(12-2)×180°÷12=150°,不是360°的约数,不可以拼地板,不符合题意;
    故选AB.
    【考点】
    本题考查了平面镶嵌(拼地板),计算正多边形的内角能否整除360°是解答此题的关键.
    4、ABD
    【解析】
    【分析】
    平面镶嵌要求多边形在同一个顶点处的所有角的和为 根据平面镶嵌的要求逐一求解各选项涉及的多边形在一个顶点处的所有的角之和,从而可得答案.
    【详解】
    解: 一幅美丽的图案,在其顶点处由四个正多边形镶嵌而成,
    其中三个分别为正三角形、正四边形、正六边形,
    在顶点处的四个角的和为:
    而正三角形、正四边形、正六边形的每一个内角依次为:
    当第四个多边形为正六边形时, 故符合题意;
    当第四个多边形为正五边形时, 故符合题意;
    当第四个多边形为正四边形时, 故不符合题意;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    当第四个多边形为正三角形时, 故符合题意;
    故选:
    【考点】
    本题考查的是平面镶嵌,熟悉平面镶嵌时,围绕在一个顶点处的所有的角组成一个周角是解题的关键.
    5、AB
    【解析】
    【分析】
    根据能互相重合的两个图形叫做全等图形对各小题分析判断即可得解.
    【详解】
    解:A、用同一张底片冲出来的10张五寸照片是全等形,正确;
    B、我国国旗上的四颗小五角星是全等形,正确;
    C、所有的正六边形是全等形,错误,正六边形的边长不一定相等;
    D、面积相等的两个直角三角形是全等形,错误.
    故选:AB.
    【考点】
    本题考查了全等图形,熟记概念是解题的关键,多边形要注意从角和边两个方面考虑.
    三、填空题
    1、11
    【解析】
    【分析】
    根据三角形三边关系可求出x的取值范围,即可求解.
    【详解】
    ∵三角形的三边为4、x、11,
    ∴11-4<x<11+4,
    ∴,
    ∴,
    故答案为:11.
    【考点】
    本题主要考查了构成三角形三边大小的关系和去绝对值的知识,利用三角形三边关系求出x的取值范围是解答本题的关键.
    2、故答案为
    58.4
    【解析】
    【分析】
    根据角的等量代换求出,便可证出,利用全等的性质得到,从而求出的长,再通过时间=路程÷速度列式计算即可.
    【详解】
    解:根据题意可得:,,,


    又∵

    ∴在和中
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·



    ∴时间=
    故答案为4
    【考点】
    本题主要考查了全等三角形的判定与性质,利用角的等量代换找出三角形全等的条件是解题的关键.
    3、.
    【解析】
    【分析】
    根据题意作出图形,然后根据角平分线的性质得到,再根据三角形的面积和最小角割比Ω的定义计算即可.
    【详解】
    解:如图示,,,,
    则,根据题意,作的角平分线交于点,
    过点,作交于点,
    过点,作交于点,

    ∵,,
    则()
    故答案是:.
    【考点】
    本题考查了三角形角平分线的性质和三角形的面积计算,熟悉相关性质是解题的关键.
    4、3
    【解析】
    【分析】
    根据角平分线上的点到角的两边距离相等可得DE=DF,再根据三角形的面积公式列式计算即可得解.
    【详解】
    解:∵AD是△ABC中∠BAC的角平分线,DE⊥AB,DF⊥AC,
    ∴DE=DF,
    ∴S△ABC=×4×2+AC×2=7,
    解得AC=3.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    故答案为:3.
    【考点】
    本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.
    5、2<AD<4
    【解析】
    【分析】
    此题要倍长中线,再连接,构造全等三角形.根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.即可求解.
    【详解】
    解:延长AD到E,使AD=DE,连接BE,
    ∵AD是△ABC的中线,
    ∴BD=CD,
    在△ADC与△EDB中,
    ∴△ADC≌△EDB(SAS),
    ∴EB=AC,
    根据三角形的三边关系定理:6-2<AE<6+2,
    ∴2<AD<4,
    故AD的取值范围为2<AD<4.
    【考点】
    本题主要考查对全等三角形的性质和判定,三角形的三边关系定理等知识点的理解和掌握,能推出6-2<AE<6+2是解此题的关键.
    四、解答题
    1、证明见解析
    【解析】
    【分析】
    过点A作EFBC,利用EFBC,可得∠1=∠B,∠2=∠C,而∠1+∠2+∠BAC=180°,利用等量代换可证∠BAC+∠B+∠C=180°.
    【详解】
    解:如图,过点A作EFBC,
    ∵EFBC,
    ∴∠1=∠B,∠2=∠C,
    ∵∠1+∠2+∠BAC=180°,
    ∴∠BAC+∠B+∠C=180°,
    即∠A+∠B+∠C=180°.
    【考点】
    本题考查了三角形的内角和定理的证明,作辅助线把三角形的三个内角转化到一个平角上是解题的关· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    键.
    2、(1)13.5;(2)5.4;
    【解析】
    【分析】
    (1)根据三角形的面积等于底乘以高除以2列式计算即可得解;
    (2)根据△ABC的面积列式计算即可得解.
    【详解】
    (1)∵CE=4.5,AB=6,
    ∴△ABC的面积=×4.5×6=13.5;
    (2)△ABC的面积=BC⋅AD=13.5,
    即BC⋅5=13.5,
    解得BC=5.4.
    【考点】
    此题考查三角形的面积,三角形的角平分线、中线和高,解题关键在于掌握计算公式.
    3、见解析
    【解析】
    【分析】
    根据角平分线的性质和已知条件,得出DE=DF,证明△BDE与△CDF全等,进而得出结论.
    【详解】
    证明:∵AD是∠BAC的角平分线DE⊥AB,DF⊥AC ,
    ∴DE=DF,∠DEB=∠DFC=90°,
    ∴ △BDE与△CDF 是直角三角形.
    在 Rt△BDE 与 Rt△CDF 中

    ∴ Rt△BDE≌ Rt△CDF (HL).
    ∴ BE=CF .
    【考点】
    本题考查了角平分线的性质与全等三角形的判定,解题的关键是熟练掌握判定定理.
    4、证明见解析.
    【解析】
    【分析】
    根据ASA证明△ADE≌△ABC即可得到答案;
    【详解】
    证明:∵∠1=∠2,
    ∵∠DAC+∠1=∠2+∠DAC
    ∴∠BAC=∠DAE,
    在△ABC和△ADE中,

    ∴△ADE≌△ABC(ASA)
    ∴BC=DE,
    【考点】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.
    5、(1)∠BDC=∠A+∠B+∠C,详见解析;(2)①40;②∠DCE=90°;③70
    【解析】
    【分析】
    (1)根据题意观察图形连接AD并延长至点F,根据一个三角形的外角等于与它不相邻的两个内角的和可证∠BDC=∠BDF+∠CDF;
    (2)①由(1)的结论可得∠ABX+∠ACX+∠A=∠BXC,然后把∠A=50°,∠BXC=90°代入上式即可得到∠ABX+∠ACX的值;
    ②结合图形可得∠DBE=∠DAE+∠ADB+∠AEB,代入∠DAE=50°,∠DBE=130°即可得到∠ADB+∠AEB的值,再利用上面得出的结论可知∠DCE=(∠ADB+∠AEB)+∠A,易得答案.
    ③由②方法,进而可得答案.
    【详解】
    解:(1)连接AD并延长至点F,
    由外角定理可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD;
    ∵∠BDC=∠BDF+∠CDF,
    ∴∠BDC=∠BAD+∠B+∠C+∠CAD.
    ∵∠BAC=∠BAD+∠CAD;
    ∴∠BDC=∠BAC +∠B+∠C;
    (2)①由(1)的结论易得:∠ABX+∠ACX+∠A=∠BXC,
    ∵∠A=50°,∠BXC=90°,
    ∴∠ABX+∠ACX=90°﹣50°=40°.
    故答案是:40;
    ②由(1)的结论易得∠DBE=∠DAE +∠ADB+∠AEB,∠DCE=∠ADC+∠AEC+∠A
    ∵∠DAE=50°,∠DBE=130°,
    ∴∠ADB+∠AEB=80°;
    ∵DC平分∠ADB,EC平分∠AEB,
    ∴∠ADC=∠ADB,∠AEC=∠AEB
    ∴∠DCE=(∠ADB+∠AEB)+∠A=40°+50°=90°;
    ③由②知,∠BG1C=(∠ABD+∠ACD)+ ∠A,
    ∵∠BG1C=77°,
    ∴设∠A为x°,
    ∵∠ABD+∠ACD=140°﹣x°,
    ∴(140﹣x)+x=77,
    ∴14﹣x+x=77,
    ∴x=70,
    ∴∠A为70°.
    故答案是:70.
    【考点】
    本题考查三角形外角的性质,三角形的内角和定理的应用,能求出∠BDC=∠A+∠B+∠C是解答的关键,注意:三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角的和.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·

    相关试卷

    综合解析人教版数学八年级上册期中定向练习试题 卷(Ⅰ)(详解版):

    这是一份综合解析人教版数学八年级上册期中定向练习试题 卷(Ⅰ)(详解版),共29页。试卷主要包含了如图,锐角△ABC的两条高BD等内容,欢迎下载使用。

    综合解析-人教版数学八年级上册期中定向练习试题 卷(Ⅰ)(含详解):

    这是一份综合解析-人教版数学八年级上册期中定向练习试题 卷(Ⅰ)(含详解),共28页。试卷主要包含了下列图形为正多边形的是等内容,欢迎下载使用。

    综合解析人教版数学八年级上册期中定向攻克试题 卷(Ⅱ)(含详解):

    这是一份综合解析人教版数学八年级上册期中定向攻克试题 卷(Ⅱ)(含详解),共21页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map