中考强化练习湖南省武冈市中考数学模拟专项测评 A卷(精选)
展开
这是一份中考强化练习湖南省武冈市中考数学模拟专项测评 A卷(精选),共36页。试卷主要包含了一元二次方程的根为,不等式的最小整数解是等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,①,②,③,④可以判定的条件有( ).
A.①②④B.①②③C.②③④D.①②③④
2、代数式的意义是( )
A.a与b的平方和除c的商B.a与b的平方和除以c的商
C.a与b的和的平方除c的商D.a与b的和的平方除以c的商
3、如图,在中,,,,是边上一动点,沿的路径移动,过点作,垂足为.设,的面积为,则下列能大致反映与函数关系的图象是( )
A.B.
C.D.
4、如图,直线AB与CD相交于点O,若,则等于( )
A.40°B.60°C.70°D.80°
5、有理数a,b在数轴上对应的位置如图所示,则下列结论正确的是( ).
A.B.C.D.
6、一元二次方程的根为( )
A.B.C.D.
7、有一个边长为1的正方形,以它的一条边为斜边,向外作一个直角三角形,再分别以直角三角形· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
的两条直角边为边,向外各作一个正方形,称为第一次“生长”(如图1);再分别以这两个正方形的边为斜边,向外各自作一个直角三角形,然后分别以这两个直角三角形的直角边为边,向外各作一个正方形,称为第二次“生长”(如图2)……如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2021次后形成的图形中所有的正方形的面积和是( )
A.1B.2020C.2021D.2022
8、如图,在矩形ABCD中,,,点O在对角线BD上,以OB为半径作交BC于点E,连接DE;若DE是的切线,此时的半径为( )
A.B.C.D.
9、不等式的最小整数解是( )
A.B.3C.4D.5
10、下列语句中,不正确的是( )
A.0是单项式B.多项式的次数是4
C.的系数是D.的系数和次数都是1
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、当我们利用两种不同的方法计算同一图形的面积时,可以得到一个等式.例如:由图1可得等式:.
(1)由图2可得等式:________;
(2)利用(1)中所得到的结论,解决下面的问题:已知且,则_______.
2、如图,在边长相同的小正方形组成的网格中,点A、B、O都在这些小正方形的顶点上,那么sin∠AOB的值为______.
3、如图,小明在一次高尔夫球训练中,从山坡下P点打出一球向球洞A点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大高度BD为12米时,球移动的水平距离PD为9米.已知山坡PA的坡度为1:2(即),洞口A离点P的水平距离PC为12米,则小明这一杆球移动到洞口A正上方时离洞口A的距离AE为______米.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
4、在平行四边形ABCD中,对角线AC长为8cm,,,则它的面积为______cm2.
5、如图,在矩形ABCD中,cm,cm.动点P、Q分别从点A、C以1cm/s的速度同时出发.动点P沿AB向终点B运动,动点Q沿CD向终点D运动,连结PQ交对角线AC于点O.设点P的运动时间为.
(1)当四边形APQD是矩形时,t的值为______.
(2)当四边形APCQ是菱形时,t的值为______.
(3)当是等腰三角形时,t的值为______.
三、解答题(5小题,每小题10分,共计50分)
1、已知:如图,在四边形中,,过点作,分别交、点、,且满足.
(1)求证:
(2)求证:
2、如图1所示,已知△ABC中,∠ACB=90°,BC=2,AC=,点D在射线BC上,以点D为圆心,BD为半径画弧交AB边AB于点E,过点E作EF⊥AB交边AC于点F,射线ED交射线AC于点G.
(1)求证:EA=EG;
(2)若点G在线段AC延长线上时,设BD=x,FC=y,求y关于x的函数解析式并写出定义域;
(3)联结DF,当△DFG是等腰三角形时,请直接写出BD的长度.
3、小欣在学习了反比例函数的图象与性质后,进一步研究了函数的图象与性质.其研究过程如下:
(1)绘制函数图象.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
①列表:下表是x与y的几组对应值,其中______;
②描点:根据表中的数值描点,请补充描出点;
③连线:用平滑的曲线顺次连接各点,请把图象补充完整.
(2)探究函数性质.
判断下列说法是否正确(正确的填“√”,错误的填“×”).
①函数值y随x的增大而减小; ( )
②函数图象关于原点对称;( )
③函数图象与直线没有交点.( )
(3)请你根据图象再写一条此函数的性质:______.
4、某商店用3700元购进A、B两种玻璃保温杯共80个,这两种玻璃保温杯的进价、标价如下表所示:
(1)这两种玻璃保温杯各购进多少个?
(2)已知A型玻璃保温杯按标价的8折出售,B型玻璃保温杯按标价的7.5折出售.在运输过程中有2个A型和1个B型玻璃保温杯不慎损坏,不能销售,请问在其它玻璃保温杯全部售出的情况下,该商店共获利多少元?
5、如图, 已知在 Rt 中, , 点 为射线 上一动点, 且 , 点 关于直线 的对称点为点 , 射线 与射线 交于点 .
(1)当点 在边 上时,
① 求证: ;
②延长 与边 的延长线相交于点 , 如果 与 相似,求线段 的长;
(2)联结 , 如果 , 求 的值.
-参考答案-
一、单选题
1、A
【分析】
根据平行线的判定定理逐个排查即可.
【详解】
解:①由于∠1和∠3是同位角,则①可判定;
②由于∠2和∠3是内错角,则②可判定;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
③①由于∠1和∠4既不是同位角、也不是内错角,则③不能判定;
④①由于∠2和∠5是同旁内角,则④可判定;
即①②④可判定.
故选A.
【点睛】
本题主要考查了平行线的判定定理,平行线的判定定理主要有:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果内错角相等,那么这两条直线平行;如果同旁内角互补,那么这两条直线平行.
2、D
【分析】
(a+b)2表示a与b的和的平方,然后再表示除以c的商.
【详解】
解:代数式的意义是a与b的和的平方除以c的商,
故选:D.
【点睛】
此题主要考查了代数式的意义,关键是根据计算顺序描述.
3、D
【分析】
分两种情况分类讨论:当0≤x≤6.4时,过C点作CH⊥AB于H,利用△ADE∽△ACB得出y与x的函数关系的图象为开口向上的抛物线的一部分;当6.4<x≤10时,利用△BDE∽△BCA得出y与x的函数关系的图象为开口向下的抛物线的一部分,然后利用此特征可对四个选项进行判断.
【详解】
解:∵,,,
∴BC=,
过CA点作CH⊥AB于H,
∴∠ADE=∠ACB=90°,
∵,
∴CH=4.8,
∴AH=,
当0≤x≤6.4时,如图1,
∵∠A=∠A,∠ADE=∠ACB=90°,
∴△ADE∽△ACB,
∴,即,解得:x=,
∴y=•x•=x2;
当6.4<x≤10时,如图2,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵∠B=∠B,∠BDE=∠ACB=90°,
∴△BDE∽△BCA,
∴,
即,解得:x=,
∴y=•x•=;
故选:D.
【点睛】
本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.解决本题的关键是利用分类讨论的思想求出y与x的函数关系式.
4、A
【分析】
根据对顶角的性质,可得∠1的度数.
【详解】
解:由对顶角相等,得
∠1=∠2,又∠1+∠2=80°,
∴∠1=40°.
故选:A.
【点睛】
本题考查的是对顶角,掌握对顶角相等这一性质是解决此题关键.
5、D
【分析】
先根据数轴可得,再根据有理数的减法法则、绝对值性质逐项判断即可得.
【详解】
解:由数轴的性质得:.
A、,则此项错误;
B、,则此项错误;
C、,则此项错误;
D、,则此项正确;
故选:D.
【点睛】
本题考查了数轴、有理数的减法、绝对值,熟练掌握数轴的性质是解题关键.
6、C
【分析】
先移项,把方程化为 再利用直接开平方的方法解方程即可.
【详解】
解:,
即
故选C
【点睛】
本题考查的是一元二次方程的解法,掌握“利用直接开平方的方法解一元二次方程”是解本题的关键.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
7、D
【分析】
根据题意可得每“生长”一次,面积和增加1,据此即可求得“生长”了2021次后形成的图形中所有的正方形的面积和.
【详解】
解:如图,
由题意得:SA=1,
由勾股定理得:SB+SC=1,
则 “生长”了1次后形成的图形中所有的正方形的面积和为2,
同理可得:
“生长”了2次后形成的图形中所有的正方形面积和为3,
“生长”了3次后形成的图形中所有正方形的面积和为4,
……
“生长”了2021次后形成的图形中所有的正方形的面积和是2022,
故选:D
【点睛】
本题考查了勾股数规律问题,找到规律是解题的关键.
8、D
【分析】
设半径为r,如解图,过点O作,根据等腰三角形性质,根据四边形ABCD为矩形,得出∠C=90°=∠OFB,∠OBF=∠DBC,可证.得出,根据勾股定理,代入数据,得出,根据勾股定理在中,,即,根据为的切线,利用勾股定理,解方程即可.
【详解】
解:设半径为r,如解图,过点O作,
∵OB=OE,
∴,
∵四边形ABCD为矩形,
∴∠C=90°=∠OFB,∠OBF=∠DBC,
∴.
∴,
∵,
∴,
∴,
∴,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴.
在中,,即,
又∵为的切线,
∴,
∴,
解得或0(不合题意舍去).
故选D.
【点睛】
本题考查矩形性质,等腰三角形性质,圆的切线,勾股定理,一元二次方程,掌握矩形性质,等腰三角形性质,圆的切线性质,勾股定理,一元二次方程,矩形性质,等腰三角形性质,圆的半径相等,勾股定理,一元二次方程,是解题关键.
9、C
【分析】
先求出不等式解集,即可求解.
【详解】
解:
解得:
所以不等式的最小整数解是4.
故选:C.
【点睛】
本题考查了一元一次不等式的解法,正确解不等式,求出解集是解决本题的关键.
10、D
【分析】
分别根据单独一个数也是单项式、多项式中每个单项式的最高次数是这个多项式的次数、单项式中的数字因数是这个单项式的系数、单项式中所有字母的指数和是这个单项式的次数解答即可.
【详解】
解:A、0是单项式,正确,不符合题意;
B、多项式的次数是4,正确,不符合题意;
C、的系数是,正确,不符合题意;
D、的系数是-1,次数是1,错误,符合题意,
故选:D.
【点睛】
本题考查单项式、单项式的系数和次数、多项式的次数,理解相关知识的概念是解答的关键.
二、填空题
1、 2
【解析】
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)方法一:直接利用正方形的面积公式可求出图形的面积;方法二:利用图形的面积等于9部分的面积之和,根据方法一和方法二的结果相等建立等式即可得;
(2)先将已知等式利用完全平方公式、整式的乘法法则变形为,再利用(1)的结论可得,从而可得,由此即可得出答案.
【详解】
解:(1)方法一:图形的面积为,
方法二:图形的面积为,
则由图2可得等式为,
故答案为:;
(2),
,
,
利用(1)的结论得:,
,
,即,
,
,
故答案为:2.
【点睛】
本题考查了完全平方公式与图形面积、整式乘法的应用,熟练掌握完全平方公式和整式的运算法则是解题关键.
2、
【解析】
【分析】
如图,过点B向AO作垂线交点为C,勾股定理求出,的值,求出的长,求出值即可.
【详解】
解:如图,过点B向AO作垂线交点为C,O到AB的距离为h
∵,,,
∴
故答案为:.
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
本题考查了锐角三角函数值,勾股定理.解题的关键是表示出所需线段长.
3、##
【解析】
【分析】
分析题意可知,抛物线的顶点坐标为(9,12),经过原点(0,0),设顶点式可求抛物线的解析式,在Rt△PAC中,利用PA的坡度为1:2求出AC的长度,把点A的横坐标x=12代入抛物线解析式,求出CE,最后利用AE=CE-AC得出结果.
【详解】
解:以P为原点,PC所在直线为x轴建立如图所示的平面直角坐标系,
可知:顶点B(9,12),抛物线经过原点,
设抛物线的解析式为y=a(x-9)2+12,
将点P(0,0)的坐标代入可得:0=a(0-9)2+12,求得a=−,
故抛物线的解析式为:y=-(x−9)²+12,
∵PC=12,=1:2,
∴点C的坐标为(12,0),AC=6,
即可得点A的坐标为(12,6),
当x=12时,y=−(12−9)²+12==CE,
∵E在A的正上方,
∴AE=CE-AC=-6=,
故答案为:.
【点睛】
本题考查了二次函数的应用及解直角三角形的知识,涉及了待定系数法求函数解析式的知识,注意建立数学模型,培养自己利用数学知识解决实际问题的能力,难度一般.
4、20
【解析】
【分析】
根据S▱ABCD=2S△ABC,所以求S△ABC可得解.作BE⊥AC于E,在直角三角形ABE中求BE从而计算S△ABC.
【详解】
解:如图,过B作BE⊥AC于E.
在直角三角形ABE中,
∠BAC=30°,AB=5,
∴BE=AB=,
S△ABC=AC•BE=10,
∴S▱ABCD=2S△ABC=20(cm2).
故答案为:20.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题综合考查了平行四边形的性质,含30度的直角三角形的性质等.先求出对角线分成的两个三角形中其中一个的面积,然后再求平行四边形的面积,这样问题就比较简单了.
5、 4 或5或4
【解析】
【分析】
(1)根据矩形的性质得到CD=cm,,求出DQ=(8-t)cm,由四边形APQD是矩形时,得到t=8-t,求出t值;
(2)连接PC,求出AP=PC=tcm,PB=(8-t)cm,由勾股定理得,即,求解即可;
(3)由勾股定理求出AC=10cm,证明△OAP≌△OCQ,得到OA=OC=5cm,分三种情况:当AP=OP时,过点P作PN⊥AO于N,证明△NAP∽△BAC,得到,求出t=;当AP=AO=5cm时,t=5;当OP=AO=5cm时,过点O作OG⊥AB于G,证明△OAG∽△CAB,得到,代入数值求出t.
【详解】
解:(1)由题意得AP=CQ=t,
∵在矩形ABCD中,cm,cm.
∴CD=cm,,
∴DQ=(8-t)cm,
当四边形APQD是矩形时,AP=DQ,
∴t=8-t,
解得t=4,
故答案为:4;
(2)连接PC,
∵四边形APCQ是菱形,
∴AP=PC=tcm,PB=(8-t)cm,
∵在矩形ABCD中,∠B=90°,
∴,
∴,
解得,
故答案为:;
(3)∵∠B=90°,cm,cm.
∴AC=10cm,
∵,
∴∠OAP=∠OCQ,∠OPA=∠OQC,
∴△OAP≌△OCQ,
∴OA=OC=5cm,
分三种情况:
当AP=OP时,过点P作PN⊥AO于N,则AN=ON=2.5cm,
∵∠NAP=∠BAC,∠ANP=∠B,
∴△NAP∽△BAC,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴,
∴,
解得t=;
当AP=AO=5cm时,t=5;
当OP=AO=5cm时,过点O作OG⊥AB于G,则,
∵∠OAG=∠BAC,∠OGA=∠B,
∴△OAG∽△CAB,
∴,
∴,
解得t=4,
故答案为:或5或4.
【点睛】
此题考查了矩形的性质,菱形的性质,等腰三角形的性质,勾股定理,相似三角形的判定及性质,熟记各知识点并应用解决问题是解题的关键.
三、解答题
1、
(1)答案见解析
(2)答案见解析
【分析】
(1)根据DFBC,得,由AB⋅AF=DF⋅BC,得,∠AFE=∠DFA,可证△AEF∽△DAF,即可得答案;
(2)根据ABCD,得,由,得,再证四边形DFBC是平行四边形,得,最后根据DFBC,即可得答案.
(1)
解:∵DFBC,
∴ ,
∴,
∵AB⋅AF=DF⋅BC,
∴,
∴,
∵∠AFE=∠DFA,
∴△AEF∽△DAF,
∴∠AEF=∠DAF;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(2)
∵ABCD,
∴,
∴,
∵,
∴,
∴,
∵DFBC,ABCD,
∴四边形DFBC是平行四边形,
∴DF=BC,
∴,
∵DFBC,
∴,
∴.
【点睛】
本题考查了平行线分线段成比例、相似三角形的判定与性质、平行四边形的判定与性质,做题的关键是相似三角形性质的灵活运用.
2、
(1)见解析
(2)
(3)
【分析】
(1)在BA上截取BM=BC=2,在Rt△ACB中,由勾股定理,可得AB=4,进而可得∠A=30°,∠B=60°;由DE=DB,可证△DEB是等边三角形,∠BED=60°,由外角和定理得∠BED=∠A+∠G,进而得∠G=30°,所以∠A=∠G,即可证EA=EG;
(2)由△DEB是等边三角形可得BE=DE,由BD=x,FC=y,得BE=x, DE=x,AE=AB-BE=4-x,在Rt△AEF中,由勾股定理可表示出 ,把相关量代入FC=AC-AF,整理即可得y关于x的函数解析式;当F点与C点重合时,x取得最小值1,G在线段AC延长线上,可知,D点不能与C点重合,所以x最大值小于2,故可得1≤x
相关试卷
这是一份中考强化练习湖南省汨罗市中考数学模拟专项测评 A卷(含答案详解),共25页。
这是一份中考强化练习湖南省武冈市中考数学模拟汇总 卷(Ⅲ)(含详解),共28页。试卷主要包含了生活中常见的探照灯,下列语句中,不正确的是等内容,欢迎下载使用。
这是一份中考强化练习湖南省武冈市中考数学模拟定向练习 卷(Ⅰ)(含答案解析),共35页。试卷主要包含了单项式的次数是等内容,欢迎下载使用。