2024年江苏省连云港市东海县西部四校中考数学模拟预测题(原卷版+解析版)
展开
这是一份2024年江苏省连云港市东海县西部四校中考数学模拟预测题(原卷版+解析版),文件包含2024年江苏省连云港市东海县西部四校中考数学模拟预测题原卷版docx、2024年江苏省连云港市东海县西部四校中考数学模拟预测题解析版docx等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。
(满分:150分 时间:120分钟)
第Ⅰ卷(选择题 共24分)
一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上.)
1. 实数的绝对值是( )
A. B. 3C. D.
2. 下列运算正确的是( )
A B. C. D.
3. 已知一组数据:,这组数据的平均数和极差分别是( )
A. 0,8B. ,7C. 0,7D. ,8
4. 函数的自变量的取值范围是( )
A. B. 且C. D. 且
5. 如图是一个由6个相同的正方体组成的立体图形,它的主视图是( )
A. B. C. D.
6. 如图,是的中位线,点在上,.连接并延长,与的延长线相交于点.若,则线段的长为( )
A. B. 7C. D. 8
7. 如图,在锐角中,,于点D.若,则的长为( )
A. B. 2C. D.
8. 如图,在平面直角坐标系中,抛物线y=与x轴的正半轴交于点A,B点为抛物线的顶点,C点为该p抛物线对称轴上一点,则的最小值为( )
A. B. 25C. 30D.
第Ⅱ卷(非选择题 共126分)
二、填空题(本大题共有8小题,每小题3分,共24分.不需要写出解答过程,请把答案直接填写在答题卡相应位置上.)
9. 因式分解:a2+ab=_____.
10. “仙境张家界,峰迷全世界”,据统计,2023年“五一”节假日期间,张家界市各大景区共接待游客约864000人次.将数据864000用科学计数法表示为______.
11. 用一个圆心角为150°,半径为12的扇形作一个圆锥的侧面,则这个圆锥的底面半径为 _____.
12. 关于的方程的一根为,则另一根为__________.
13. 如图,点A、B、C在上,的半径为3,,则的长为 _____.
14. 已知反比例函数y=(k≠0)的图象过点A(a,y1),B(a+1,y2),若y2>y1,则a的取值范围为_____.
15. 把一张宽为2cm的长方形纸片ABCD折叠成如图所示的阴影图案,顶点A,D互相重合,中间空白部分是以E为直角顶点,腰长为4cm的等腰直角三角形,则纸片的长AD为_______ cm.
16. 如图,等边△ABC中,BC=6,O、H分别为边AB、AC的三等分点,AH=AC,AO=AB,将△ABC绕点B顺时针旋转100°到的位置,则整个旋转过程中线段OH所扫过部分的面积为 __________________.
三、解答题(本大题共11小题,共102分.请在答题卡上指定区域内作答.解答时写出必要的文字说明、证明过程或演算步骤.)
17. 计算:
18. 解不等式组,并写出解集中的整数解.
19. 先化简,再求值:,其中是方程根.
20. 为弘扬中华民族传统文化,某市举办了中小学生“国学经典大赛”,比赛项目为:.唐诗;.宋词;.论语;.三字经.比赛形式分“单人组”和“双人组”.
(1)小华参加“单人组”,他从中随机抽取一个比赛项目,恰好抽中“论语”的概率是多少?
(2)小明和小红组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次.则恰好小明抽中“唐诗”且小红抽中“宋词”的概率是多少?小明和小红都没有抽到“三字经”的概率是多少?请用画树状图或列表的方法进行说明.
21. 为了解学生完成书面作业所用时间的情况,进一步优化作业管理,某中学从全校学生中随机抽取部分学生,对他们一周平均每天完成书面作业的时间t(单位:分钟)进行调查.将调查数据进行整理后分为五组:A组“”;B组“”;C组“”;D组“”;E组“”.现将调查结果绘制成如下两幅不完整的统计图.
根据以上信息,解答下列问题:
(1)这次调查的样本容量是______,请补全条形统计图;
(2)在扇形统计图中,A组对应的圆心角的度数是______,本次调查数据的中位数落在______组内;
(3)若该中学有2000名学生,请你估计该中学一周平均每天完成书面作业不超过90分钟的学生有多少人?
22. 如图,一次函数与函数为的图象交于两点.
(1)求这两个函数的解析式;
(2)根据图象,直接写出满足时x的取值范围;
(3)点P在线段上,过点P作x轴的垂线,垂足为M,交函数的图象于点Q,若面积为3,求点P的坐标.
23. 两汉文化看徐州,桐桐在徐州博物馆“天工汉玉”展厅参观时了解到;玉壁,玉环为我国传统玉器,通常为正中带圆孔的扇圆型器物,据《尔雅·释器》记载:“肉倍好,谓之璧;肉好若一,调之环.”如图1,“肉”指边(阴影部分),“好”指孔,其比例关系见图示,以考古发现看,这两种玉器的“肉”与“好”未必符合该比例关系.
(1)若图1中两个大圆直径相等,则璧与环的“肉”的面积之比为 ;
(2)利用圆规与无刻度的直尺,解决下列问题(保留作图痕迹,不写作法).
①图2为徐州狮子山楚王墓出土的“雷纹玉环”及其主视图,试判断该件玉器的比例关系是否符合“肉好若一”?
②图3表示一件圆形玉坯,若将其加工成玉璧,且比例关系符合“肉倍好”,请画出内孔.
24. 如图是一台放置在水平桌面上的笔记本电脑,将其侧面抽象成如右图所示的几何图形,若显示屏所在面的侧边AO与键盘所在面的侧边BO长均为24cm,点P为眼睛所在位置,D为AO的中点,连接PD,当PD⊥AO时,称点P为“最佳视角点”,作PC⊥BC,垂足C在OB的延长线上,且BC=12cm.
(1)当PA=45cm时,求PC的长;
(2)若∠AOC=120°时,“最佳视角点”P在直线PC上的位置会发生什么变化?此时PC的长是多少?请通过计算说明.(结果精确到0.1cm,可用科学计算器,参考数据:,)
25. 某快递公司为了加强疫情防控需求,提高工作效率,计划购买A、B两种型号的机器人来搬运货物,已知每台A型机器人比每台B型机器人每天少搬运10吨,且A型机器人每天搬运540吨货物与B型机器人每天搬运600吨货物所需台数相同.
(1)求每台A型机器人和每台B型机器人每天分别搬运货物多少吨?
(2)每台A型机器人售价1.2万元,每台B型机器人售价2万元,该公司计划采购A、B两种型号的机器人共30台,必须满足每天搬运的货物不低于2830吨,购买金额不超过48万元.
请根据以上要求,完成如下问题:
①设购买A型机器人台,购买总金额为万元,请写出与的函数关系式;
②请你求出最节省采购方案,购买总金额最低是多少万元?
26. 在平面直角坐标系中,已知直线与x轴交于点A,y轴交于点B,点C在线段上,以点C为顶点的抛物线M:经过点B.
(1)求点A,B的坐标;
(2)求b,c的值;
(3)平移抛物线M至N,点C,B分别平移至点P,D,联结,且轴,如果点P在x轴上,且新抛物线过点B,求抛物线N的函数解析式.
27. (1)如图1,在矩形中,为边上一点,连接,若,过C作交于点F,
①求证:;
②若时,则 .
(2)如图2,在菱形中,,过作交的延长线于点,过作交于点,若时,求的值.
(3)如图3,在平行四边形中,,,,点E在上,且,点为上一点,连接,过作交平行四边形的边于点,若时,请直接写出的长.
相关试卷
这是一份2024年吉林省中考数学模拟预测题(一)(原卷版+解析版),文件包含2024年吉林省中考数学模拟预测题一原卷版docx、2024年吉林省中考数学模拟预测题一解析版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。
这是一份2024年江苏省连云港市东海县西部四校中考模拟预测数学试题,共6页。
这是一份2023年江苏省徐州市中考数学模拟预测题(原卷版+解析版),文件包含精品解析2023年江苏省徐州市中考数学模拟预测题原卷版docx、精品解析2023年江苏省徐州市中考数学模拟预测题解析版docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。