2024年安徽省池州市中考联考二模数学试题(原卷版+解析版)
展开注意事项:
1.你拿到的试卷满分为150分.考试时间为120分钟.
2.试卷包括“试题卷”和“答题卷”两部分,“试题卷”共4页,“答题卷”共6页.
3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的.
4,考试结束后,请将“试题卷”和“答题卷”一并交回.
一、选择题(本题共10小题,每小题4分,满分40分)
1. 相反数是( )
A. B. 2024C. D.
2. 计算:的结果是( )
A. B. C. D.
3. 下列立体图形中,主视图是圆的是( )
A. B. C. D.
4. 据国土资源部数据显示,我国是全球“可燃冰”资源储量最多的国家之一,海、陆总储量约为39000000000吨油当量,将39000000000用科学记数法表示为( )
A. 3.9×1010B. 3.9×109C. 0.39×1011D. 39×109
5. 将一副三角板按下图所示摆放在一组平行线内,,,则的度数为( )
A. B. C. D.
6. 一位射击运动员在一次训练效果测试中射击了次,成绩如图所示,对于这10次射击的成绩有如下结论,其中不正确的是( )
A. 众数是B. 中位数是C. 平均数是D. 方差是
7. 将直线向下平移后得到直线,若直线经过点,且,则直线的解析式为( )
A B. C. D.
8. 如图,在矩形ABCD中,AB=3,作BD的垂直平分线E,F,分别与AD、BC交于点E、F,连接BE,DF,若EF=AE+FC,则边BC的长为( )
A. B. C. D.
9. 如图,反比例函数图象上有A,两点,过点作轴于点,交于点.若,的面积为2,则的值为( )
A B. C. D.
10. 在中,,,、是的两条角平分线,分别交、于点、,且、交于点,过点作于点,则的最大值为( )
A. B. 2C. 1D.
二、填空题(本题共4小题,每小题5分,满分20分)
11. 因式分解:_____.
12. 不等式解集为______.
13. 如图,在ABC中,AB=AC=6,∠BAC=90°,点D、E为BC边上的两点,分别沿AD、AE折叠,B、C两点重合于点F,若DE=5,则AD的长为_____.
14. 已知抛物线.
(1)若,则抛物线的顶点坐标为______.
(2)直线与直线交于点M,与抛物线交于点N.若当时,的长度随t的增大而减小,则m的取值范围是______.
三、(本大题共2小题,每小题8分,满分16分)
15. 计算:.
16. 如图,在边长为1个单位长度的小正方形组成的网格中,△ABC的位置如图所示(顶点是网格线的交点)
(1)请画出△ABC向右平移2单位再向下平移3个单位的格点△A1B1C1
(2)画出△ABC绕点O逆时针方向旋转90°得到的△A2B2C2并求出旋转过程中点B到B2所经过的路径长.
四、(本大题共2小题,每小题8分,满分16分)
17. 观察下列式子:
第1个等式:;
第2个等式:;
第3个等式:;
……
(1)请写出第4个等式:______;
(2)设一个两位数表示为,根据上述规律,请写出的一般性规律,并予以证明.
18. 我国传统数学名著九章算术记载:“今有牛五、羊二,直金十九两;牛二、羊五,直金十六两.问牛、羊各直金几何?”译文:“假设有头牛、只羊,值两银子;头牛、只羊,值两银子.问每头牛、每只羊分别值银子多少两?”根据以上译文,求每头牛、每只羊各值多少两银子?
五、(本大题共2小题,每小题10分,满分20分)
19. 图1、图2别是一名滑雪运动员在滑雪过程中某一时刻的实物图与示意图,已知运动员的小腿与斜坡垂直,大腿与斜坡平行,G为头部,假设G、E、D三点共线且头部到斜坡的距离为,上身与大腿夹角,膝盖与滑雪板后端的距离长为,.
(1)求此滑雪运动员的小腿的长度;
(2)求此运动员的身高.(参考数据:,,)
20. 如图,中,以为直径的交于点D,是的切线,且,垂足为E,延长交于点F.
(1)求证:;
(2)若,求的长.
六、(本题满分12分)
21. 2021年4月23日,是第26个世界读书日.为了让校园沐浴着浓郁的书香,某学校一课外学习小组在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.
请根据图中信息解决下列问题:
(1)共有________名同学参与问卷调查;补全条形统计图和扇形统计图.
(2)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少;
(3)学习小组从每一个月阅读4本课外书的同学中选取2名男生、2名女生组成一个“阅读”宣讲小组,若从4人中随机指定两人担任正、副组长,求这两人刚好是一名男生一名女生的概率.
七、(本题满分12分)
22. 如图,抛物线与正半轴交于点,与轴交于点,对称轴为直线.
(1)求直线的解析式及抛物线的解析式;
(2)如图,点为第一象限抛物线上一动点,过点作轴,垂足为,交于点,求当点的横坐标为多少时,最大;
(3)如图,将抛物线向左平移得到抛物线,直线与抛物线交于、两点,若点是线段的中点,求抛物线的解析式.
八、(本题满分14分)
23. 在四边形中,点是对角线上一点,过点作交于点.
(1)如图1,当四边形为正方形时,求的值为______;
(2)如图2,当四边形为矩形时,,探究的值(用含的式子表示),并写出探究过程;
(3)在(2)的条件下,连接,当,,时,求的长.
2024年安徽省合肥市新站区中考一模数学试题(原卷版+解析版): 这是一份2024年安徽省合肥市新站区中考一模数学试题(原卷版+解析版),文件包含2024年安徽省合肥市新站区中考一模数学试题原卷版docx、2024年安徽省合肥市新站区中考一模数学试题解析版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
2024年安徽省名校联考中考一模数学试题(2份打包,原卷版+解析版): 这是一份2024年安徽省名校联考中考一模数学试题(2份打包,原卷版+解析版),共30页。
2024年安徽省中考一模数学试题(原卷版+解析版): 这是一份2024年安徽省中考一模数学试题(原卷版+解析版),文件包含精品解析2024年安徽省中考一模数学试题原卷版docx、精品解析2024年安徽省中考一模数学试题解析版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。