高考数学解答题规范专题练 (含答案)
展开
这是一份高考数学解答题规范专题练 (含答案),共12页。
(1)满足有解三角形的序号组合有哪些?
(2)请在(1)所有组合中任选一组,求对应△ABC的面积.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
2.(2023·河北衡水中学模拟)黄河鲤是我国华北地区的主要淡水养殖品种之一,其鳞片金黄、体型梭长,尤以色泽鲜丽、肉质细嫩、气味清香而著称.为研究黄河鲤早期生长发育的规律,丰富黄河鲤早期养殖经验,某院校研究小组以当地某水产养殖基地的黄河鲤仔鱼为研究对象,从出卵开始持续观察20天,试验期间,每天固定时段从试验水体中随机取出同批次9尾黄河鲤仔鱼测量体长,取其均值作为第ti天的观测值yi(单位:mm),其中ti=i,i=1,2,3,…,20.根据以往的统计资料,该组数据(ti,yi)可以用Lgistic曲线拟合模型y=eq \f(1,\f(1,u)+abt)或Lgistic非线性回归模型y=eq \f(u,1+ea-bt)进行统计分析,其中a,b,u为参数.基于这两个模型,绘制得到如图所示的散点图和残差图.
(1)你认为哪个模型的拟合效果更好?分别结合散点图和残差图进行说明;
(2)假定u=12.5,且黄河鲤仔鱼的体长y与天数t具有很强的相关关系.现对数据进行初步处理,得到如下统计量的值:eq \x\t(t)=eq \f(1,20)eq \i\su(i=1,20,t)i=10.5,eq \x\t(z)=eq \f(1,20)eq \i\su(i=1,20,t)i=-3.83,eq \x\t(w)=eq \f(1,20)eq \i\su(i=1,20,t)i=-1.608,eq \i\su(i=1,20,t)(ti-eq \x\t(t))2=665,eq \i\su(i=1,20,t)(zi-eq \x\t(z))(ti-eq \x\t(t))=-109.06,eq \i\su(i=1,20,t)(wi-eq \x\t(w))(ti-eq \x\t(t))=-138.32,其中zi=lneq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,yi)-\f(1,u))),wi=lneq \b\lc\(\rc\)(\a\vs4\al\c1(\f(u,yi)-1)),根据(1)的判断结果及给定数据,求y关于t的经验回归方程,并预测第22天时仔鱼的体长(结果精确到小数点后2位).
附:对于一组数据(x1,y1),(x2,y2),…,(xn,yn),其经验回归直线eq \(y,\s\up6(^))=eq \(a,\s\up6(^))+eq \(b,\s\up6(^))x的斜率和截距的最小二乘估计分别为eq \(b,\s\up6(^))=eq \f(\i\su(i=1,n, )xi-\x\t(x)yi-\x\t(y),\i\su(i=1,n, )xi-\x\t(x)2),eq \(a,\s\up6(^))=eq \x\t(y)-eq \(b,\s\up6(^))eq \x\t(x);参考数据:e-4≈0.018 3.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
3.(2023·锦州模拟)记Sn为各项均为正数的等比数列{an}的前n项和,S3=14,且a3,3a2,a4成等差数列.
(1)求{an}的通项公式;
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
(2)在an和an+1之间插入n个数,使得这n+2个数依次组成公差为dn的等差数列,求数列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(1,dn)))的前n项和Tn.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
4.(2023·镇江模拟)在直角梯形AA1B1B中,A1B1∥AB,AA1⊥AB,AB=AA1=2A1B1=6,直角梯形AA1B1B绕直角边AA1旋转一周得到如图所示的圆台A1A,已知点P,Q分别在线段CC1,BC上,二面角B1-AA1-C1的大小为θ.
(1)若θ=120°,eq \(CP,\s\up6(→))=eq \f(2,3)eq \(CC1,\s\up6(—→)),AQ⊥AB,证明:PQ∥平面AA1B1B;
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
(2)若θ=90°,点P为CC1上的动点,点Q为BC的中点,求PQ与平面AA1C1C所成最大角的正切值,并求此时平面APQ与平面APC夹角的余弦值.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
5.(2023·哈尔滨三中模拟)已知平面内动点M到定点F(0,1)的距离和到定直线y=4的距离的比为定值eq \f(1,2).
(1)求动点M的轨迹方程;
(2)设动点M的轨迹为曲线C,过点(1,0)的直线交曲线C于不同的两点A,B,过点A,B分别作直线x=t的垂线,垂足分别为A1,B1,判断是否存在常数t,使得四边形AA1B1B的对角线交于一定点.若存在,求出常数t的值和该定点坐标;若不存在,说明理由.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
6.(2023·佛山模拟)已知函数f(x)=ex-aln(ax+1)-1,其中a>0,x≥0.
(1)当a=1时,求函数f(x)的零点;
(2)若函数f(x)≥0恒成立,求a的取值范围.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
1.(2023·杭州第二中学模拟)已知a,b,c分别为△ABC内角A,B,C的对边,若△ABC同时满足下列四个条件中的三个:①a=eq \r(3);②b=2;③eq \f(sin B+sin C,sin A)=eq \f(a+c,b-c);④cs2eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(B-C,2)))-sin Bsin C=eq \f(1,4).
(1)满足有解三角形的序号组合有哪些?
(2)请在(1)所有组合中任选一组,求对应△ABC的面积.
解 (1)对于③,eq \f(b+c,a)=eq \f(a+c,b-c)⇒eq \f(a2+c2-b2,2ac)=-eq \f(1,2),
∵B∈(0,π),
∴B=eq \f(2π,3);
对于④,eq \f(1+csB-C,2)-sin Bsin C=eq \f(1,4)⇒cs(B-C)-2sin Bsin C=-eq \f(1,2),
即cs(B+C)=-eq \f(1,2),且A+B+C=π,00,设A(x1,y1),B(x2,y2),则A1(t,y1),B1(t,y2).
则由根与系数的关系得y1+y2=eq \f(-8m,4m2+3),y1y2=eq \f(-8,4m2+3),
则y1+y2=my1y2.
若存在常数t,使得四边形AA1B1B的对角线交于一定点,
由对称性知,该定点一定在x轴上,设该定点为D(s,0),则A1,B,D三点共线.
又eq \(A1B,\s\up6(—→))=(x2-t,y2-y1),eq \(A1D,\s\up6(—→))=(s-t,-y1),则-y1(x2-t)=(y2-y1)(s-t)
⇒-y1x2+y2t=(y2-y1)s
⇒s=eq \f(-y1x2+y2t,y2-y1)
=eq \f(-y1my2+1+y2t,y2-y1)
=eq \f(-my1y2-y1+ty2,y2-y1)
=eq \f(-y1+y2-y1+ty2,y2-y1)
=eq \f(t-1y2-2y1,y2-y1).
由s为定值,则eq \f(t-1,2)=1⇒t=3,s=2.
同理,若A,B1,D三点共线,可得t=3,s=2.
故存在常数t=3,使得四边形AA1B1B的对角线交于一定点,该定点为(2,0).
6.(2023·佛山模拟)已知函数f(x)=ex-aln(ax+1)-1,其中a>0,x≥0.
(1)当a=1时,求函数f(x)的零点;
(2)若函数f(x)≥0恒成立,求a的取值范围.
解 (1)当a=1时,f(x)=ex-ln(x+1)-1,
f′(x)=ex-eq \f(1,x+1),
当x≥0时,ex≥1≥eq \f(1,x+1),得f′(x)≥0恒成立.
即可得f(x)在[0,+∞)上单调递增.
而此时f(0)=0,
即可得f(x)在[0,+∞)上仅有1个零点,且该零点为0.
(2)函数f(x)≥0等价于ex-aln(ax+1)-1≥0,
因为a>0,所以eq \f(ex,a)≥ln(ax+1)+eq \f(1,a),
得ex-ln a≥ln(ax+1)+eq \f(1,a),
所以ex-ln a+x-ln a≥ln(ax+1)+eq \f(1,a)+x-ln a,
所以ex-ln a+x-ln a≥ln eq \f(ax+1,a)+eq \f(ax+1,a)=+ln eq \f(ax+1,a),
构造函数g(x)=ex+x,上式等价于g(x-ln a)≥geq \b\lc\(\rc\)(\a\vs4\al\c1(ln \f(ax+1,a))),
函数g(x)在定义域内为增函数,
从而可得x-ln a≥ln eq \f(ax+1,a)成立.
化简可得x≥ln(ax+1),等价于ex-ax-1≥0恒成立.
设函数h(x)=ex-ax-1,易知h(0)=0,
h′(x)=ex-a,
当01时,x∈[0,ln a)时,h′(x)=ex-a
相关试卷
这是一份专题一 规范答题1 函数与导数--2024年高考数学复习二轮讲义,共3页。
这是一份新高考数学二轮复习 第1部分 专题3 规范答题3 数 列(含解析),共1页。
这是一份新高考数学二轮复习 第1部分 专题1 规范答题1 函数与导数(含解析),共2页。