年终活动
搜索
    上传资料 赚现金

    18.2.3 平行四边形的性质和判定的应用 华东师大版八年级数学下册教学设计

    立即下载
    加入资料篮
    18.2.3 平行四边形的性质和判定的应用 华东师大版八年级数学下册教学设计第1页
    18.2.3 平行四边形的性质和判定的应用 华东师大版八年级数学下册教学设计第2页
    还剩2页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    华师大版八年级下册18.2 平行四边形的判定教学设计

    展开

    这是一份华师大版八年级下册18.2 平行四边形的判定教学设计,共4页。教案主要包含了课堂引入,例习题分析,课堂练习,课后练习等内容,欢迎下载使用。
    1.掌握用一组对边平行且相等来判定平行四边形的方法.
    2.会综合运用平行四边形的四种判定方法和性质来证明问题.
    3.通过平行四边形的性质与判定的应用,启迪学生的思维,提高分析问题的能力.
    重点、难点
    1.重点:平行四边形各种判定方法及其应用,尤其是根据不同条件能正确地选择判定方法.
    2.难点:平行四边形的判定定理与性质定理的综合应用.
    3.难点的突破方法:
    本节课是平行四边形的判定的第3课时,上一节课已经学习了判定方法1和判定方法2,再结合平行四边形的定义,同学们已经掌握了3种平行四边形的判定方法.本节课在上节课的基础上,学习平行四边形的判定方法3,使同学们会应用这些方法进行几何的推理证明,并且通过本节课的学习,继续培养学生的分析问题、寻找最佳解题途径的能力.
    本节课的知识点不难,但学生灵活运用判定定理去解决相关问题并不容易,在以后的教学中还应加强一题多解和寻找最佳解题方法的训练.
    (1)平行四边形的判定方法3不是性质的逆命题.它可以用平行四边形定义或平行四边形判定方法1或2来证明,可以看作是巩固前面两个判定方法的一个很好的练习题.教学中可引导学生用不同的方法进行证明,以活跃学生的思维.
    (2)注意强调:判定方法3是“一组对边平行且相等的四边形是平行四边形”,而“一组对边平行另一组对边相等的四边形不一定是平行四边形”.例如:如图,AD∥BC,AB=DC,但四边形ABCD不是平行四边形.
    (3)学过本节后,应使学生掌握平行四边形的四个(或五个)判定方法,这些判定的方法是:
    从边看:①两组对边分别平行的四边形是平行四边形;
    ②两组对边分别相等的四边形是平行四边形;
    ③一组对边平行且相等的四边形是平行四边形.
    从对角线看:对角线互相平分的四边形是平行四边形.
    (从角看:两组对角分别相等的四边形是平行四边形.)
    (4)让学生了解平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如求角的度数,线段的长度,证明角相等或线段相等等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再用平行四边形的性质去解决某些问题.
    (5)平行四边形的概念、性质、判定都是非常重要的基础知识,这些知识是本章的重点内容,要使学生熟练地掌握这些知识.
    例题的意图分析
    本节课的两个例题都是补充的题目,目的是让学生能掌握平行四边形的第三种判定方法和会综合运用平行四边形的判定方法和性质来解决问题.学生程度好一些的学校,可以适当地自己再补充一些题目,使同学们会应用这些方法进行几何的推理证明,通过学习,培养学生分析问题、寻找最佳解题途径的能力.
    教学过程
    一、课堂引入
    平行四边形的性质;
    平行四边形的判定方法;
    【探究】 取两根等长的木条AB、CD,将它们平行放置,再用两根木条BC、AD加固,得到的四边形ABCD是平行四边形吗?
    结论:一组对边平行且相等的四边形是平行四边形.
    二、例习题分析
    例1(补充)已知:如图,ABCD中,E、F分别是AD、BC的中点,求证:BE=DF.
    分析:证明BE=DF,可以证明两个三角形全等,也可以证明
    四边形BEDF是平行四边形,比较方法,可以看出第二种方法简单.
    证明:∵ 四边形ABCD是平行四边形,
    ∴ AD∥CB,AD=CD.
    ∵ E、F分别是AD、BC的中点,
    ∴ DE∥BF,且DE=AD,BF=BC.
    ∴ DE=BF.
    ∴ 四边形BEDF是平行四边形(一组对边平行且相等的四边形平行四边形).
    ∴ BE=DF.
    此题综合运用了平行四边形的性质和判定,先运用平行四边形的性质得到判定另一个四边形是平行四边形的条件,再应用平行四边形的性质得出结论;题目虽不复杂,但层次有三,且利用知识较多,因此应使学生获得清晰的证明思路.
    例2(补充)已知:如图,ABCD中,E、F分别是AC上两点,且BE⊥AC于E,DF⊥AC于F.求证:四边形BEDF是平行四边形.
    分析:因为BE⊥AC于E,DF⊥AC于F,所以BE∥DF.需再证明BE=DF,这需要证明△ABE与△CDF全等,由角角边即可.
    证明:∵ 四边形ABCD是平行四边形,
    ∴ AB=CD,且AB∥CD.
    ∴ ∠BAE=∠DCF.
    ∵ BE⊥AC于E,DF⊥AC于F,
    ∴ BE∥DF,且∠BEA=∠DFC=90°.
    ∴ △ABE≌△CDF (AAS).
    ∴ BE=DF.
    ∴ 四边形BEDF是平行四边形(一组对边平行且相等的四边形平行四边形).
    三、课堂练习
    1.(选择)在下列给出的条件中,能判定四边形ABCD为平行四边形的是( ).
    (A)AB∥CD,AD=BC (B)∠A=∠B,∠C=∠D
    (C)AB=CD,AD=BC (D)AB=AD,CB=CD
    2.已知:如图,AC∥ED,点B在AC上,且AB=ED=BC, 找出图中的平行四边形,并说明理由.
    3.已知:如图,在ABCD中,AE、CF分别是∠DAB、∠BCD的平分线.
    求证:四边形AFCE是平行四边形.
    四、课后练习
    1.判断题:
    (1)相邻的两个角都互补的四边形是平行四边形; ( )
    (2)两组对角分别相等的四边形是平行四边形; ( )
    (3)一组对边平行,另一组对边相等的四边形是平行四边形; ( )
    (4)一组对边平行且相等的四边形是平行四边形; ( )
    (5)对角线相等的四边形是平行四边形; ( )
    (6)对角线互相平分的四边形是平行四边形形. ( )
    2.延长△ABC的中线AD至E,使DE=AD.求证:四边形ABEC是平行四边形.
    3.在四边形ABCD中,(1)AB∥CD;(2)AD∥BC;(3)AD=BC;(4)AO=OC;(5)DO=BO;(6)AB=CD.选择两个条件,能判定四边形ABCD是平行四边形的共有________对.(共有9对)

    相关教案

    初中人教版第十八章 平行四边形18.2 特殊的平行四边形18.2.3 正方形教案:

    这是一份初中人教版第十八章 平行四边形18.2 特殊的平行四边形18.2.3 正方形教案,共11页。教案主要包含了教学目标,教学重,教学过程,教学反思等内容,欢迎下载使用。

    初中数学北京课改版八年级下册15.3 平行四边形的性质与判定教案:

    这是一份初中数学北京课改版八年级下册15.3 平行四边形的性质与判定教案,共3页。教案主要包含了复习引入,新课探究,巩固提升,归纳小结等内容,欢迎下载使用。

    初中数学15.3 平行四边形的性质与判定教学设计:

    这是一份初中数学15.3 平行四边形的性质与判定教学设计,共3页。教案主要包含了复习引入,新课探究,巩固提升,归纳小结等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map