终身会员
搜索
    上传资料 赚现金
    2024七年级数学下册专题05同底数幂的乘法压轴题四种模型全攻略试题(附解析浙教版)
    立即下载
    加入资料篮
    2024七年级数学下册专题05同底数幂的乘法压轴题四种模型全攻略试题(附解析浙教版)01
    2024七年级数学下册专题05同底数幂的乘法压轴题四种模型全攻略试题(附解析浙教版)02
    2024七年级数学下册专题05同底数幂的乘法压轴题四种模型全攻略试题(附解析浙教版)03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024七年级数学下册专题05同底数幂的乘法压轴题四种模型全攻略试题(附解析浙教版)

    展开
    这是一份2024七年级数学下册专题05同底数幂的乘法压轴题四种模型全攻略试题(附解析浙教版),共21页。

    专题05 同底数幂的乘法压轴题四种模型全攻略【类型一 幂的乘法运算】例1.计算:(1)(2)【答案】(1);(2)【解析】【分析】(1)根据同底数幂的乘法及幂的乘方可直接进行求解;(2)根据幂的乘方、积的乘方、同底数幂的乘法及合并同类项可直接进行求解.【详解】解:(1)原式=;(2)原式=.【点睛】本题主要考查同底数幂的乘法、幂的乘方及积的乘方,熟练掌握各个运算法则是解题的关键.【变式训练1】化简:.【答案】【解析】【分析】根据幂的运算法则计算,再合并同类项即可.【详解】解:,=,=,=.【点睛】本题考查了整式的运算,解题关键是熟练运幂的运算法则进行计算,再准确地合并同类项.【变式训练2】计算:(1)       (2)【答案】(1);(2)【解析】【分析】(1)根据同底数幂的乘法,幂的乘方以及整式的加减计算法则进行求解即可;(2)根据积的乘方,以及整式的加减计算法则进行求解即可.【详解】(1)原式;(2)原式.【点睛】本题主要考查了同底数幂的乘方,幂的乘方,积的乘方以及整式的加减计算,解题的关键在于能够熟练掌握相关计算法则.【变式训练3】计算(1);(2);(3);(4);(5);【答案】(1);(2);(3);(4);(5).【解析】【分析】(1)由题意利用幂的乘方和积的乘方以及同底数幂的乘法进行计算即可;(2)由题意利用幂的乘方和积的乘方以及合并同类项原则进行计算即可;(3)由题意直接利用同底数幂的乘法进行计算即可;(4)由题意直接利用同底数幂的乘法进行计算即可;(5)由题意利用幂的乘方和积的乘方以及合并同类项原则进行计算即可.(1)解:.(2)解:.(3)解:.(4)解:.(5)解:.【点睛】本题考查整式的乘法运算,熟练掌握幂的四则运算法则是解题的关键.【类型二 幂的运算逆用】例2(1)已知,求的值.(2)已知,求m的值.【答案】(1)16;(2)【解析】【分析】(1)逆运用幂的乘方和同底数幂的乘法变形后,将代入求解即可;(2)等式的左边逆运用幂的乘方和同底数幂的乘法变形后,根据底数相同指数相同的两个数相同可得m的方程求解即可.【详解】解:(1)∵,∴;(2)∵,∴,即,∴,解得.【点睛】本题考查幂的乘方运算和同底数幂的乘法.熟练掌握公式,并能逆运用是解题关键.【变式训练1】(1)若2x+5y﹣3=0,求4x•32y的值.(2)已知a3m=3,b3n=2.求(a2m)3+(bn)3-a2mbn·a4mb2n的值.【答案】(1)8;(2)-7【解析】【分析】(1)先化为以2为底的幂的形式,再利用同底数幂相乘,底数不变,指数相加,最后采用整体代入思想解题;(2)先利用幂的乘方公式将所要求的式子化简,再代入解题.【详解】解:(1)若2x+5y﹣3=0,则2x+5y=3;(2)(a2m)3+(bn)3-a2mbn·a4mb2n=(a3m)2+(b3n)-a6mb3n=(a3m)2+(b3n)-(a3m)2b3n=32+2-32×2=9+2-18=-7.【点睛】本题考查幂的运算,涉及同底数幂的乘法、幂的乘方、整体思想等知识,是重要考点,掌握相关知识是解题关键.【变式训练2】计算(1)已知,求x的值.(2)若为正整数,且,求的值.【答案】(1)4;(2)2450【解析】【分析】(1)已知等式左边利用同底数幂的乘法法则变形,计算即可求出x的值.(2)首先计算积的乘方可得9x6n-13x4n,再根据幂的乘方进行变形,把底数变为x2n,然后代入求值即可.【详解】解:(1)2x+3-2x=8•2x-2x=7×2x=112,得到2x=16,则x=4;(2)∵x2n=7,∴(3x3n)2-13(x2)2n=9x6n-13x4n=9(x2n)3-13(x2n)2=9×73-13×72=2450.【点睛】此题主要考查了幂的乘方和积的乘方以及同底数幂的乘法,熟练掌握运算法则是解本题的关键.【变式训练3】(1)已知,求的值.(2)已知:,求的值.(3)已知,求的值.(4)已知,求m的值.【答案】(1);(2);(3)16;(4)【解析】【分析】(1)根据幂的除法运算法则再逆用幂的乘方即可求解;(2)利用幂的运算法则都化成底数为x2n的形式,即可求解;(3)把8x化成底数为2的幂的形式,再利用同底数幂的乘法法则计算即可;(4)都化成底数为3的幂的形式,再利用同底数幂的乘法法则计算得到关于m的一元一次方程,再解即可.【详解】解:(1)(1)∵,∴;(2)∵x2n=3,∴===.(3)∵,∴;(4)∵,∴,即,∴,解得.【点睛】本题考查了同底数幂的乘法、幂的乘方的计算方法,根据式子的特点,灵活变形解决问题.【类型三 新定义运算】例3.规定两个非零数a,b之间的一种新运算,如果am=b,那么a∧b=m.例如:因为52=25,所以5∧25=2;因为50=1,所以5∧1=0.(1)根据上述规定填空:2∧32=   ;﹣3∧81=   .(2)在运算时,按以上规定请说明等式8∧9+8∧10=8∧90成立.【答案】(1)5,4;(2)说明见解析.【解析】【分析】(1)结合新定义运算及有理数的乘方运算法则分析计算;(2)结合新定义运算及同底数幂的乘法运算法则进行分析说明.【详解】解:(1)∵25=32,∴2∧32=5,∵(−3)4=81,∴−3∧81=4,故答案为:5;4;(2)设8∧9=a,8∧10=b,8∧90=c,∴8a=9,8b=10,8c=90∴8a×8b=8a+b=9×10=90=8c,∴a+b=c,即8∧9+8∧10=8∧90.【点睛】本题考查新定义运算,掌握有理数乘方运算法则,同底数幂的乘方运算法则是解题关键.【变式训练1】规定,求:(1)求;(2)若,求x的值.【答案】(1);(2)【解析】【分析】(1)根据规定即可完成;(2)根据规定及幂的运算,可得关于x的方程,解方程即可.【详解】(1),;(2),,则,解得:.【点睛】本题是新定义运算问题,考查了同底数幂的运算,解方程等知识,理解新定义运算是解题的关键.【变式训练2】如果,那么我们规定.例如:因为,所以(1)根据上述规定填空:__________,__________,__________;(2)记,,.判断a,b,c之间的等量关系,并说明理由.【答案】(1)3,0,−2;a+b=c.理由见详解【解析】【分析】(1)直接利用幂的乘方运算法则计算得出答案;(2)直接利用幂的乘方运算法则以及同底数幂的乘法运算法则计算得出答案.【详解】解:(1)∵33=27,∴(3,27)=3,∵40=1,∴(4,1)=0,∵2−2=0.25,∴(2,0.25)=−2.故答案为:3,0,−2;(2)a+b=c.理由:∵(2,5)=a,(2,6)=b,(2,30)=c,∴2a=5,2b=6,2c=30,∴2a×2b=5×6=30,∴2a×2b=2c,∴a+b=c.【点睛】题主要考查了同底数幂的乘法运算,熟练掌握同底数幂的乘法则及其逆运用是解题关键.【变式训练3】我们已经学习过“乘方”运算,下面给同学们介绍一种新的运算,即对数运算.定义:如果=N(a>0,a≠1,N>0),则b叫做以a为底N的对数,记作=b,例如:因为=125,所以=3;因为=121,所以=2(1)填空:=   ,=   ;(2)如果=3,求m的值.【答案】(1)1,0;(2)m=10.【解析】【分析】(1)把对数运算转化为幂运算求解即可;(2)把对数运算转化为幂的运算求解即可.【详解】解:(1)∵,∴=1,=0,故答案为:1,0;(2)∵=3,∴=m﹣2,解得:m=10.【点睛】本题考查了新运算问题,解答时,熟练将对数运算转化为对应的幂的运算是解题的关键.【类型四 比较大小】例4.比较下列各题中幂的大小:(1)已知,比较a、b、c的大小关系;(2)比较这4个数的大小关系;(3)已知,比较P,Q的大小关系;【答案】(1)a>b>c;(2);(3)P=Q【解析】【分析】(1)根据幂的乘方公式,化为底数是3的形式进行比较;(2)根据幂的乘方公式,化为指数是11的形式进行比较;(3)利用作商法,结合积的乘方法则计算,根据结果判断.【详解】解:(1)∵,,,∴a>b>c;(2),,,,∵,∴;(3)∵,∴P=Q.【点睛】本题考查了幂的乘方和积的乘方,灵活运用运算法则是解题的关键.【变式训练1】阅读材料,解决问题.材料一:比较和的大小.解:因为,而,所以,即.小结:在指数相同的情况下,可通过比较底数的大小,来确定两个幂的大小.材料二:比较和的大小.解:因为,而,所以,即.小结:在底数相同的情况下,可以通过比较指数的大小,来确定两个幂的大小.(1)比较,,的大小:(2)比较,,的大小.【答案】(1)344>433>522;(2)8131>2741>961【解析】【分析】(1)根据幂的乘方法则的逆运算进行变形,再比较大小;(2)根据幂的乘方法则的逆运算进行变形,再比较大小.【详解】解:(1)∵344=(34)11=8111,433=(43)11=6411,522=(52)11=2511,∵81>64>25,∴8111>6411>2511,即344>433>522;(2)∵8131=(34)31=3124,2741=(33)41=3123,961=(32)61=3122,∵124>123>122,∴3124>3123>3122,即8131>2741>961.【点睛】本题考查幂的乘方与积的乘方、有理数大小比较,解答本题的关键是明确有理数大小的比较方法.【变式训练2】阅读:已知正整数a、b、c,显然,当同底数时,指数大的幂也大,若对于同指数,不同底数的两个幂ab和cb,当a>c时,则有ab>cb,根据上述材料,回答下列问题.(1)比较大小:520  420(填写>、<或=).(2)比较233与322的大小(写出比较的具体过程).(3)计算42021×0.252020﹣82021×0.1252020【答案】(1)>(2)233<322(3)-4【解析】【分析】(1)根据同指数的幂底数越大幂越大,可得答案;(2)根据幂的乘方,可得指数相同的幂,根据底数越大幂越大,可得答案;(3)逆向运用积的乘方运算法则解答即可.(1)解:∵5>4,∴520>420,故答案是:>;(2)解:∵233=(23)11=811,322=(32)11=911,又∵811<911,∴233<322;(3)解:42021×0.252020﹣82021×0.1252020==4×12020﹣8×12020=4﹣8=﹣4.【点睛】本题考查了幂的乘方与积的乘方,利用同指数的幂底数越大幂越大是解题关键.【变式训练3】将幂的运算逆向思维可以得到,,,,在解题过程中,根据算式的结构特征,逆向运用幂的运算法则,常可化繁为简,化难为易,使问题巧妙获解.(1)_________;(2)若,求的值;(3)比较大小:,则的大小关系是什么?(提示:如果,为正整数,那么)【答案】(1)1;(2);(3).【解析】【分析】(1)根据积的乘方公式,进行逆运算,即可解答;(2)转化为同底数幂进行计算,即可解答;(3)转化为指数相同,再比较底数的大小,即可解答.【详解】解:(1)故答案为:1(2)∵,∴,∴,即,∴,解得;(3)由题可得:,,,,∵,∴,即.【点睛】本题考查了幂的乘方和积的乘方,解决本题的关键是公式的逆运用.【课后训练】一、选择题1.计算:(       )A. B. C. D.【答案】D【解析】【分析】按照积的乘方法则,先各自乘方,后把积相乘即可.【详解】∵==,故选:D.【点睛】本题考查了积的乘方运算,正确进行各自的乘方计算是解题的关键.2.下列运算中正确的是(  )A.3a﹣2a=1 B.a•a2=3a3 C.(ab2)3=a3b3 D.a2•a3=a5【答案】D【解析】【分析】根据同底数幂的乘法,积的乘方,合并同类项法则依次计算判断即可得.【详解】解:A、合并同类项,系数相加字母部分不变,,故A错误;B、同底数幂相乘,底数不变指数相加,,故B错误;C、积的乘方等于每个因式分别乘方,再把所得的幂相乘,,故C错误;D、同底数幂相乘,底数不变指数相加,故D正确;故选:D.【点睛】题目主要考查同底数幂的乘法,积的乘方,合并同类项,熟练掌握各个运算法则是解题关键.3.已知,,,则a,b,c的大小关系是(       )A. B. C. D.【答案】A【解析】【分析】根据幂的乘方的逆运算可直接进行排除选项.【详解】解:∵,,,∴,,,∴;故选A.【点睛】本题主要考查幂的乘方的逆用,熟练掌握幂的乘方的逆用是解题的关键.二、填空题4.计算:a2⋅a4=______.=_____.【答案】     a6     【解析】【分析】根据同底数幂的乘法法则和积的乘方法则计算.【详解】解:a2·a4=a6.=.故答案为:a6;【点睛】本题考查了幂的运算,熟练掌握幂的运算法则是解答本题的关键.同底数的幂相乘,底数不变,指数相加;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.5.若为正整数,且,则的值为 _______ .【答案】2891【解析】【分析】用幂的乘方法则将原式变形为,然后代入求值计算即可.【详解】解:原式,因为,所以,原式 故答案为:2891【点睛】本题考查幂的乘方法则的灵活应用,熟练掌握幂的乘方法则和整体代入的思想是本题的解题关键.6.阅读理解:①根据幂的意义,表示个相乘;则;②,知道和可以求,我们不妨思考;如果知道,,能否求呢?对于,规定,,例如:,所以,.记,,,;与之间的关系式为__.【答案】【解析】【分析】由题意得:x=54m,y−3=54m+2,然后根据同底数幂的逆用得问题的答案.【详解】解:由题意得:,,,即.故答案为:.【点睛】本题考查了有理数的乘方、同底数幂乘法的逆用,正确理解新规定是解题的关键.三、解答题7.计算:(﹣3a2)3+(4a3)2﹣a2•a4.【答案】【解析】【分析】原式利用幂的乘方与积的乘方运算法则计算,合并即可得到结果.【详解】解:(﹣3a2)3+(4a3)2﹣a2•a4===【点睛】本题主要考查了幂的乘方与积的乘方运算,熟练掌握运算法则是解答本题的关键.8.计算:(1)(2)【答案】(1);(2)【解析】【分析】(1)先计算积的乘方,幂的乘方,再合并同类项即可;(2)计算同底数幂乘法,幂的乘方,积的乘方,合并同类项即可.【详解】解:(1),=,=,=;(2),,.【点睛】本题考查幂的混合运算,掌握幂的运算法则是解题关键.9.计算:(1)已知,求的值;(2)已知n为正整数,且,求的值.【答案】(1)(2)【解析】【分析】(1)由积的乘方公式解题;(2)由积的乘方公式解得,再利用整体代入法解题.(1)解:.(2)原式.【点睛】本题考查积的乘方、幂的乘方等知识,是重要考点,难度一般,掌握相关知识是解题关键.10.(1)若,,求的值;(2)若,求的值;(3)比较大小:,,.【答案】(1)108;(2)8;(3).【解析】【分析】(1)根据求解即可;(2)根据求解即可;(3)先得到,,,然后比较大小即可.【详解】解:(1)∵,,∴;(2)∵,∴;(3),,∵,∴.【点睛】本题主要考查了同底数幂乘法的逆用,幂的乘方的逆用,解题的关键在于能够熟练掌握相关知识进行求解.11.定义:若am=b,则Lab=m(a>0).例如23=8,则L28=3.(1)运用以上定义,计算L525﹣L22;(2)如果L23=x, ,求x+2y的值.【答案】(1)1;(2)3.【解析】【分析】(1)由定义和幂的运算可得,L525=2,L22=1;(2)由定义可得2x=3,4y=22y=,所以2x×4y=2x×22y=2x+2y=3×=8=23,可求得结果为3.【详解】解:(1)∵52=25,21=2,∴L525=2,L22=1,∴L525﹣L22=2﹣1=1;(2)由定义可得2x=3,4y=22y=,∴2x×4y=2x×22y=2x+2y=3×=8=23,∴x+2y的值是3.【点睛】此题考查了代数式求值及幂的应用能力,关键是能根据题目定义和幂的运算进行准确变形、计算.12.若(且,m、n是正整数),则.利用上面结论解决下面的问题:(1)如果,求x的值;(2)如果,求x的值;(3)若,,用含x的代数式表示y.【答案】(1);(2);(3)【解析】【分析】(1)先,将底数都化为2,再利用同底数幂的乘除法法则计算;(2)利用积的乘方逆运算解答;(3)利用等式的性质及幂的乘方逆运算将式子变形为,,即可得到x与y的关系式,由此得到答案.【详解】解:(1)∵,∴,∴,解得;(2)∵,∴,,,;(3)∵,,∴,,∴,∴.【点睛】此题考查整式的乘法公式:同底数幂相乘、同底数幂相除、积的乘方以及幂的乘方的计算法则,熟记法则及其逆运算是解题的关键.13.规定两数之间的一种运算,记作:如果,那么.例如:因为,所以(2,8)=3.(1)根据上述规定,填空:(5,125)=,(-2,4)=,(-2,1)=;(2)小明在研究这种运算时发现一个现象:,他给出了如下的证明:设,则,即∴,即,∴.请你尝试运用上述这种方法说明下面这个等式成立的理由.(4,7)+(4,8)=(4,56)【答案】(1)3、2、0 ;(2)见解析【解析】【分析】(1)根据定义新运算分别进行计算,即可得答案;(2)设(4,7)=x,(4,8)=y,根据同底数幂的乘法法则即可求解.【详解】解:(1)53=125,(5,125)=3,(-2)2=4,(-2,4)=2,(-2)0=1,(-2,1)=0,              故答案为:3;2;0;(2)设(4,7)=x,(4,8)=y, ∴               ∴       ∵             ∴                      ∴(4,56)=x+y,∴(4,56)= (4,7)+(4,8)∴等式成立【点睛】此题考查了有理数的混合运算,弄清题中的新运算是解本题的关键.14.一般地,n个相同的因数a相乘a•a•…•a,记为an;如2×2×2=23=8,此时3叫做以2为底8的对数,记为log28(即log28=3),一般地,若an=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为logab(即logab=n),如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算下列各对数的值:log24=   ;log216=   ;log264=   ;(2)你能得到log24、log216、log264之间满足怎样的关系式:   ;(3)由(2)的结果,请你归纳出logaM、logaN、logaMN之间满足的关系式:   ;(4)根据幂的运算以及对数的含义验证(3)的结论.【答案】(1)2,4,6;(2)log24+log216=log264;(3)logaM+logaN=loga(MN),(4)验证见解析.【解析】【分析】(1)根据对数的定义即可求得值;(2)根据(1)的结果即可得出三者间的关系;(3)根据(2)的结果即可得出三者满足的关系式;(4)根据对数的意义及同底数幂的乘法即可证明.【详解】(1)∵∴log24=2∵∴log216=4∵∴log264=6故答案为:2,4,6(2)由(1)知,log24+log216=log264故答案为:log24+log216=log264(3)由(2)的结果知:logaM+logaN=logaMN故答案为:logaM+logaN=logaMN(4)设logaM=m,logaN=n由对数的定义知,,∵∴∵logaM+logaN=m+n∴logaM+logaN=logaMN【点睛】本题是材料阅读题,考查了同底数幂的运算,乘方的计算等知识,关键是读懂材料中对数的含义.
    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2024七年级数学下册专题05同底数幂的乘法压轴题四种模型全攻略试题(附解析浙教版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map