终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    中考数学试卷分类汇编 反比例函数应用题

    立即下载
    加入资料篮
    中考数学试卷分类汇编 反比例函数应用题第1页
    中考数学试卷分类汇编 反比例函数应用题第2页
    中考数学试卷分类汇编 反比例函数应用题第3页
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考数学试卷分类汇编 反比例函数应用题

    展开

    这是一份中考数学试卷分类汇编 反比例函数应用题,共6页。试卷主要包含了.已知该材料初始温度是32℃.等内容,欢迎下载使用。

    2、(2013•绍兴)教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的( )
    3、(2013•玉林)工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800℃,然后停止煅烧进行锻造操作,经过8min时,材料温度降为600℃.煅烧时温度y(℃)与时间x(min)成一次函数关系;锻造时,温度y(℃)与时间x(min)成反比例函数关系(如图).已知该材料初始温度是32℃.
    (1)分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;
    (2)根据工艺要求,当材料温度低于480℃时,须停止操作.那么锻造的操作时间有多长?
    4、(2013•益阳)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线的一部分.请根据图中信息解答下列问题:
    (1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?
    (2)求k的值;
    (3)当x=16时,大棚内的温度约为多少度?
    5、(2013• 德州)某地计划用120﹣180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3.
    (1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式,并给出自变量x的取值范围;
    (2)由于工程进度的需要,实际平均每天运送土石比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?
    6、(2013凉山州)某车队要把4000吨货物运到雅安地震灾区(方案定后,每天的运量不变).
    (1)从运输开始,每天运输的货物吨数n(单位:吨)与运输时间t(单位:天)之间有怎样的函数关系式?
    (2)因地震,到灾区的道路受阻,实际每天比原计划少运20%,则推迟1天完成任务,求原计划完成任务的天数.
    考点:反比例函数的应用;分式方程的应用.
    分析:(1)根据每天运量×天数=总运量即可列出函数关系式;
    (2)根据“实际每天比原计划少运20%,则推迟1天完成任务”列出方程求解即可.
    解答:解:(1)∵每天运量×天数=总运量
    ∴nt=4000
    ∴n=;
    (2)设原计划x天完成,根据题意得:
    解得:x=4
    经检验:x=4是原方程的根,
    答:原计划4天完成.
    点评:本题考查了反比例函数的应用及分式方程的应用,解题的关键是找到题目中的等量关系.
    7、(2013浙江丽水)如图,科技小组准备用材料围建一个面积为60m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12m,设AD的长为m,DC的长为m。
    (1)求与之间的函数关系式;
    (2)若围成矩形科技园ABCD的三边材料总长不超过26m,材料AD和DC的长都是整米数,求出满足条件的所有围建方案。

    A.
    B.
    C.
    D.
    考点:
    反比例函数的应用;反比例函数的图象.
    分析:
    根据题意有:=;故y与x之间的函数图象双曲线,且根据,n的实际意义,n应大于0;其图象在第一象限.
    解答:
    解:∵由题意,得Q=n,
    ∴=,
    ∵Q为一定值,
    ∴是n的反比例函数,其图象为双曲线,
    又∵>0,n>0,
    ∴图象在第一象限.
    故选B.
    点评:
    此题考查了反比例函数在实际生活中的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.

    A.
    7:20
    B.
    7:30
    C.
    7:45
    D.
    7:50
    考点:
    反比例函数的应用.3718684
    分析:
    第1步:求出两个函数的解析式;
    第2步:求出饮水机完成一个循环周期所需要的时间;
    第3步:求出每一个循环周期内,水温不超过50℃的时间段;
    第4步:结合4个选择项,逐一进行分析计算,得出结论.
    解答:
    解:∵开机加热时每分钟上升10℃,
    ∴从30℃到100℃需要7分钟,
    设一次函数关系式为:y=k1x+b,
    将(0,30),(7,100)代入y=k1x+b得k1=10,b=30
    ∴y=10x+30(0≤x≤7),令y=50,解得x=2;
    设反比例函数关系式为:y=,
    将(7,100)代入y=得k=700,∴y=,
    将y=30代入y=,解得x=;
    ∴y=(7≤x≤),令y=50,解得x=14.
    所以,饮水机的一个循环周期为 分钟.每一个循环周期内,在0≤x≤2及14≤x≤时间段内,水温不超过50℃.
    逐一分析如下:
    选项A:7:20至8:45之间有85分钟.85﹣×3=15,位于14≤x≤时间段内,故可行;
    选项B:7:30至8:45之间有75分钟.75﹣×3=5,不在0≤x≤2及14≤x≤时间段内,故不可行;
    选项C:7:45至8:45之间有60分钟.60﹣×2=≈13.3,不在0≤x≤2及14≤x≤时间段内,故不可行;
    选项D:7:50至8:45之间有55分钟.55﹣×2=≈8.3,不在0≤x≤2及14≤x≤时间段内,故不可行.
    综上所述,四个选项中,唯有7:20符合题意.
    故选A.
    点评:
    本题主要考查了一次函数及反比例函数的应用题,还有时间的讨论问题.同学们在解答时要读懂题意,才不易出错.
    考点:
    反比例函数的应用;一次函数的应用.
    分析:
    (1)首先根据题意,材料加热时,温度y与时间x成一次函数关系;停止加热进行操作时,温度y与时间x成反比例关系;
    将题中数据代入用待定系数法可得两个函数的关系式;
    (2)把y=480代入y=中,进一步求解可得答案.
    解答:
    解:(1)停止加热时,设y=(k≠0),
    由题意得600=,
    解得k=4800,
    当y=800时,
    解得x=6,
    ∴点B的坐标为(6,800)
    材料加热时,设y=ax+32(a≠0),
    由题意得800=6a+32,
    解得a=128,
    ∴材料加热时,y与x的函数关系式为y=128x+32(0≤x≤5).
    ∴停止加热进行操作时y与x的函数关系式为y=(5<x≤20);
    (2)把y=480代入y=,得x=10,
    故从开始加热到停止操作,共经历了10分钟.
    答:从开始加热到停止操作,共经历了10分钟.
    点评:
    考查了反比例函数和一次函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式。
    考点:
    反比例函数的应用;一次函数的应用.
    分析:
    (1)根据图象直接得出大棚温度18℃的时间为12﹣2=10(小时);
    (2)利用待定系数法求反比例函数解析式即可;
    (3)将x=16代入函数解析式求出y的值即可.
    解答:
    解:(1)恒温系统在这天保持大棚温度18℃的时间为10小时.
    (2)∵点B(12,18)在双曲线y=上,
    ∴18=,
    ∴解得:k=216.
    (3)当x=16时,y==13.5,
    所以当x=16时,大棚内的温度约为13.5℃.
    点评:
    此题主要考查了反比例函数的应用,求出反比例函数解析式是解题关键.
    考点:
    反比例函数的应用;分式方程的应用.
    专题:
    应用题.
    分析:
    (1)利用“每天的工作量×天数=土方总量”可以得到两个变量之间的函数关系;
    (2)根据“工期比原计划减少了24天”找到等量关系并列出方程求解即可;
    解答:
    解:(1)由题意得,y=
    把y=120代入y=,得x=3
    把y=180代入y=,得x=2,
    ∴自变量的取值范围为:2≤x≤3,
    ∴y=(2≤x≤3);
    (2)设原计划平均每天运送土石方x万米3,则实际平均每天运送土石方(x+0.5)万米3,
    根据题意得:
    解得:x=2.5或x=﹣3
    经检验x=2.5或x=﹣3均为原方程的根,但x=﹣3不符合题意,故舍去,
    答:原计划每天运送2.5万米3,实际每天运送3万米3.
    点评:
    本题考查了反比例函数的应用及分式方程的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.

    相关试卷

    全国各地中考数学试卷分类汇编:反比例函数:

    这是一份全国各地中考数学试卷分类汇编:反比例函数,共61页。试卷主要包含了选择题,四象限,,解答题等内容,欢迎下载使用。

    2022年中考数学分类汇编22讲专题19 应用题:

    这是一份2022年中考数学分类汇编22讲专题19 应用题,文件包含专题19应用题-函数不等式方程-老师版docx、专题19应用题-函数不等式方程-学生版docx等2份试卷配套教学资源,其中试卷共50页, 欢迎下载使用。

    2022年中考数学真题分类汇编:13 反比例函数:

    这是一份2022年中考数学真题分类汇编:13 反比例函数,共17页。试卷主要包含了单选题,第三象限D.第二,综合题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map