中考数学真题分类汇编第一期专题30圆的有关性质试题含解析
展开
这是一份中考数学真题分类汇编第一期专题30圆的有关性质试题含解析,共43页。试卷主要包含了选择题等内容,欢迎下载使用。
1. (2018•山东枣庄•3分)如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为( )
A.B.2C.2D.8
【分析】作OH⊥CD于H,连结OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA﹣AP=2,接着在Rt△OPH中根据含30度的直角三角形的性质计算出OH=OP=1,然后在Rt△OHC中利用勾股定理计算出CH=,所以CD=2CH=2.
【解答】解:作OH⊥CD于H,连结OC,如图,
∵OH⊥CD,
∴HC=HD,
∵AP=2,BP=6,
∴AB=8,
∴OA=4,
∴OP=OA﹣AP=2,
在Rt△OPH中,∵∠OPH=30°,
∴∠POH=60°,
∴OH=OP=1,
在Rt△OHC中,∵OC=4,OH=1,
∴CH==,
∴CD=2CH=2.
故选:C.
【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理以及含30度的直角三角形的性质.
2. (2018•四川凉州•3分)如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为( )
A.40°B.30°C.45°D.50°
【分析】首先根据等腰三角形的性质及三角形内角和定理求出∠AOB的度数,再利用圆周角与圆心角的关系求出∠ACB的度数.
【解答】解:△AOB中,OA=OB,∠ABO=50°,
∴∠AOB=180°﹣2∠ABO=80°,
∴∠ACB=∠AOB=40°,
故选:A.
【点评】本题主要考查了圆周角定理的应用,涉及到的知识点还有:等腰三角形的性质以及三角形内角和定理.
3. (2018•山东菏泽•3分)如图,在⊙O中,OC⊥AB,∠ADC=32°,则∠OBA的度数是( )
A.64°B.58°C.32°D.26°
【考点】M5:圆周角定理;KD:全等三角形的判定与性质.
【分析】根据垂径定理,可得=,∠OEB=90°,根据圆周角定理,可得∠3,根据直角三角形的性质,可得答案.
【解答】解:如图,
由OC⊥AB,得
=,∠OEB=90°.
∴∠2=∠3.
∵∠2=2∠1=2×32°=64°.
∴∠3=64°,
在Rt△OBE中,∠OEB=90°,
∴∠B=90°﹣∠3=90°﹣64°=26°,
故选:D.
【点评】本题考查了圆周角定理,利用垂径定理得出=,∠OEB=90°是解题关键,又利用了圆周角定理.
4. (2018•江苏盐城•3分)如图, 为 的直径, 是 的弦, ,则 的度数为( )
A. B. C. D.
7.【答案】C
【考点】圆周角定理
【解析】【解答】解:∵ ,∠ADC与∠B所对的弧相同,∴∠B=∠ADC=35°,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠CAB=90°-∠B=55°,
故答案为:C
【分析】由同弧所对的圆周角相等可知∠B=∠ADC=35°;而由圆周角的推论不难得知∠ACB=90°,则由∠CAB=90°-∠B即可求得。
5.(2018·湖北省宜昌·3分)如图,直线AB是⊙O的切线,C为切点,OD∥AB交⊙O于点D,点E在⊙O上,连接OC,EC,ED,则∠CED的度数为( )
A.30°B.35°C.40°D.45°
【分析】由切线的性质知∠OCB=90°,再根据平行线的性质得∠COD=90°,最后由圆周角定理可得答案.
【解答】解:∵直线AB是⊙O的切线,C为切点,
∴∠OCB=90°,
∵OD∥AB,
∴∠COD=90°,
∴∠CED=∠COD=45°,
故选:D.
【点评】本题主要考查切线的性质,解题的关键是掌握圆的切线垂直于经过切点的半径及圆周角定理.
6.(2018·湖北省武汉·3分)如图,在⊙O中,点C在优弧上,将弧沿BC折叠后刚好经过AB的中点D.若⊙O的半径为,AB=4,则BC的长是( )
A. B. C. D.
【分析】连接OD、AC、DC、OB、OC,作CE⊥AB于E,OF⊥CE于F,如图,利用垂径定理得到OD⊥AB,则AD=BD=AB=2,于是根据勾股定理可计算出OD=1,再利用折叠的性质可判断弧AC和弧CD所在的圆为等圆,则根据圆周角定理得到=,所以AC=DC,利用等腰三角形的性质得AE=DE=1,接着证明四边形ODEF为正方形得到OF=EF=1,然后计算出CF后得到CE=BE=3,于是得到BC=3.
【解答】解:连接OD、AC、DC、OB、OC,作CE⊥AB于E,OF⊥CE于F,如图,
∵D为AB的中点,
∴OD⊥AB,
∴AD=BD=AB=2,
在Rt△OBD中,OD==1,
∵将弧沿BC折叠后刚好经过AB的中点D.
∴弧AC和弧CD所在的圆为等圆,
∴=,
∴AC=DC,
∴AE=DE=1,
易得四边形ODEF为正方形,
∴OF=EF=1,
在Rt△OCF中,CF==2,
∴CE=CF+EF=2+1=3,
而BE=BD+DE=2+1=3,
∴BC=3.
故选:B.
【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和垂径定理.
7.(2018·山东青岛·3分)如图,点A、B、C、D在⊙O上,∠AOC=140°,点B是的中点,则∠D的度数是( )
A.70°B.55°C.35.5°D.35°
【分析】根据圆心角、弧、弦的关系定理得到∠AOB=∠AOC,再根据圆周角定理解答.
【解答】解:连接OB,
∵点B是的中点,
∴∠AOB=∠AOC=70°,
由圆周角定理得,∠D=∠AOB=35°,
故选:D.
【点评】本题考查的是圆心角、弧、弦的关系定理、圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.
8.(2018·山东威海·3分)如图,⊙O的半径为5,AB为弦,点C为的中点,若∠ABC=30°,则弦AB的长为( )
A.B.5C.D.5
【分析】连接OC、OA,利用圆周角定理得出∠AOC=60°,再利用垂径定理得出AB即可.
【解答】解:连接OC、OA,
∵∠ABC=30°,
∴∠AOC=60°,
∵AB为弦,点C为的中点,
∴OC⊥AB,
在Rt△OAE中,AE=,
∴AB=,
故选:D.
【点评】此题考查圆周角定理,关键是利用圆周角定理得出∠AOC=60°.
9. (2018•甘肃白银,定西,武威•3分) 如图,过点,,,点是轴下方上的一点,连接,,则的度数是( )
A. B. C. D.
【答案】B
【解析】【分析】连接CD,根据圆周角定理可知∠OBD=∠OCD,根据锐角三角形函数即可求出∠OCD的度数.
【解答】连接CD,
∵∠OBD与∠OCD是同弧所对的圆周角,
∴∠OBD=∠OCD.
∵
∴
故选B.
【点评】考查圆周角定理,解直角三角形,熟练掌握在同圆或等圆中,同弧所对的圆周角相等是解题的关键.
10. (2018·四川自贡·4分)如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC的长为( )
A.B.C.D.
【分析】延长BO交圆于D,连接CD,则∠BCD=90°,∠D=∠A=60°;又BD=2R,根据锐角三角函数的定义得BC=R.
【解答】解:延长BO交⊙O于D,连接CD,
则∠BCD=90°,∠D=∠A=60°,
∴∠CBD=30°,
∵BD=2R,
∴DC=R,
∴BC=R,
故选:D.
【点评】此题综合运用了圆周角定理、直角三角形30°角的性质、勾股定理,注意:作直径构造直角三角形是解决本题的关键.
11 (2018·台湾·分)如图,坐标平面上,A、B两点分别为圆P与x轴、y轴的交点,有一直线L通过P点且与AB垂直,C点为L与y轴的交点.若A、B、C的坐标分别为(a,0),(0,4),(0,﹣5),其中a<0,则a的值为何?( )
A.﹣2B.﹣2C.﹣8D.﹣7
【分析】连接AC,根据线段垂直平分线的性质得到AC=BC,根据勾股定理求出OA,得到答案.
【解答】解:连接AC,
由题意得,BC=OB+OC=9,
∵直线L通过P点且与AB垂直,
∴直线L是线段AB的垂直平分线,
∴AC=BC=9,
在Rt△AOC中,AO==2,
∵a<0,
∴a=﹣2,
故选:A.
【点评】本题考查的是垂径定理、坐标与图形的性质以及勾股定理,掌握垂径定理的推论是解题的关键.
12.(2018·浙江临安·3分)如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=( )
A.B.C.D.
【考点】垂径定理和勾股定理
【分析】根据垂径定理先求BC一半的长,再求BC的长.
【解答】解:设OA与BC相交于D点.
∵AB=OA=OB=6
∴△OAB是等边三角形.
又根据垂径定理可得,OA平分BC,
利用勾股定理可得BD==3
所以BC=6.
故选:A.
【点评】本题的关键是利用垂径定理和勾股定理.
13.(2018·浙江衢州·3分)如图,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是( )
A.75° B.70° C.65° D.35°
【考点】圆周角定理
【分析】直接根据圆周角定理求解.
【解答】解:∵∠ACB=35°,∴∠AOB=2∠ACB=70°.
故选B.
【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
14 (2018·浙江衢州·3分)如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是( )
A.3cm B. cm C.2.5cm D. cm
【考点】垂径定理
【分析】根据垂径定理得出OE的长,进而利用勾股定理得出BC的长,再利用相似三角形的判定和性质解答即可.
【解答】解:连接OB,
∵AC是⊙O的直径,弦BD⊥AO于E,BD=8cm,AE=2cm.在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2
解得:OE=3,∴OB=3+2=5,∴EC=5+3=8.在Rt△EBC中,BC=.
∵OF⊥BC,∴∠OFC=∠CEB=90°.
∵∠C=∠C,∴△OFC∽△BEC,∴,即,解得:OF=.
故选D.
【点评】本题考查了垂径定理,关键是根据垂径定理得出OE的长.
15. (2018·广东深圳·3分)如图,一把直尺, 的直角三角板和光盘如图摆放, 为 角与直尺交点, ,则光盘的直径是( )
A.3
B.
C.
D.
【答案】D
【考点】切线的性质,锐角三角函数的定义,切线长定理
【解析】【解答】解:设光盘切直角三角形斜边于点C,连接OC、OB、OA(如图),
∵∠DAC=60°,
∴∠BAC=120°.
又∵AB、AC为圆O的切线,
∴AC=AB,∠BAO=∠CAO=60°,
在Rt△AOB中,
∵AB=3,
∴tan∠BAO= ,
∴OB=AB×tan∠60°=3 ,
∴光盘的直径为6 .
故答案为:D.
【分析】设光盘切直角三角形斜边于点C,连接OC、OB、OA(如图),根据邻补角定义得∠BAC=120°,又由切线长定理AC=AB,∠BAO=∠CAO=60°;在Rt△AOB中,根据正切定义得tan∠BAO= ,代入数值即可得半径OB长,由直径是半径的2倍即可得出答案.
16. (2018·广东广州·3分)如图,AB是圆O的弦,OC⊥AB,交圆O于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB的度数是( )
A.40°
B.50°
C.70°
D.80°
【答案】D
【考点】垂径定理,圆周角定理
【解析】【解答】解:∵∠ABC=20°,
∴∠AOC=40°,
又∵OC⊥AB,
∴OC平分∠AOB,
∴∠AOB=2∠AOC=80°.
故答案为:D.
【分析】根据同弧所对的圆心角等于圆周角的两倍得∠AOC度数,再由垂径定理得OC平分∠AOB,由角平分线定义得∠AOB=2∠AOC.
17.(2018年四川省南充市)如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32°,则∠B的度数是( )
A.58°B.60°C.64°D.68°
【考点】M5:圆周角定理.
【分析】根据半径相等,得出OC=OA,进而得出∠C=32°,利用直径和圆周角定理解答即可.
【解答】解:∵OA=OC,
∴∠C=∠OAC=32°,
∵BC是直径,
∴∠B=90°﹣32°=58°,
故选:A.
【点评】此题考查了圆周角的性质与等腰三角形的性质.此题比较简单,解题的关键是注意数形结合思想的应用.
二.填空题
1. (2018·广东·3分)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是 50° .
【分析】直接利用圆周角定理求解.
【解答】解:弧AB所对的圆心角是100°,则弧AB所对的圆周角为50°.
故答案为50°.
【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
2. (2018·广东·3分)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为 π .(结果保留π)
【分析】连接OE,如图,利用切线的性质得OD=2,OE⊥BC,易得四边形OECD为正方形,先利用扇形面积公式,利用S正方形OECD﹣S扇形EOD计算由弧DE、线段EC、CD所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积.
【解答】解:连接OE,如图,
∵以AD为直径的半圆O与BC相切于点E,
∴OD=2,OE⊥BC,
易得四边形OECD为正方形,
∴由弧DE、线段EC、CD所围成的面积=S正方形OECD﹣S扇形EOD=22﹣=4﹣π,
∴阴影部分的面积=×2×4﹣(4﹣π)=π.
故答案为π.
【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了矩形的性质和扇形的面积公式.
3.(2018•湖北黄冈•3分)如图,△ABC内接于⊙O,AB为⊙O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=6,则AC=___________.
(第11题图)
【考点】圆,角平分线,30°角所对的直角边等于的一半,勾股定理.
【分析】连结BD,根据30°角所对的直角边等于的一半,易得出BD=AC=AB;再通过勾股定理可求得AB的长,从而得出AC的长。
【解答】解:连结BD,
∵AB为⊙O的直径,∠CAB=60°,弦AD平分∠CAB,
∴∠ABC=∠DAB=30°
∴在Rt△ABC和 Rt△ABD中,BD=AC=AB
在Rt△ABD中,AB2=BD2+AD2,即AB2=(AB)2+62,
∴AB=4,
∴AC=2.
故答案为:2.
【点评】本题考查了圆,角平分线,30°角所对的直角边等于的一半,勾股定理. 熟练掌握定理是解题的关键。
4 (2018·新疆生产建设兵团·5分)如图,△ABC是⊙O的内接正三角形,⊙O的半径为2,则图中阴影部的面积是 .
【分析】根据等边三角形性质及圆周角定理可得扇形对应的圆心角度数,再根据扇形面积公式计算即可.
【解答】解:∵△ABC是等边三角形,
∴∠C=60°,
根据圆周角定理可得∠AOB=2∠C=120°,
∴阴影部分的面积是=π,
故答案为:
【点评】本题主要考查扇形面积的计算和圆周角定理,根据等边三角形性质和圆周角定理求得圆心角度数是解题的关键.
5. (2018·四川宜宾·3分)如图,AB是半圆的直径,AC是一条弦,D是AC的中点,DE⊥AB于点E且DE交AC于点F,DB交AC于点G,若=,则= .
【考点】S9:相似三角形的判定与性质;M2:垂径定理.
【分析】由AB是直径,推出∠ADG=∠GCB=90°,因为∠AGD=∠CGB,推出cs∠CGB=cs∠AGD,可得=,设EF=3k,AE=4k,则AF=DF=FG=5k,DE=8k,想办法求出DG、AG即可解决问题;
【解答】解:连接AD,BC.
∵AB是半圆的直径,
∴∠ADB=90°,又DE⊥AB,
∴∠ADE=∠ABD,
∵D是 的中点,
∴∠DAC=∠ABD,
∴∠ADE=∠DAC,
∴FA=FD;
∵∠ADE=∠DBC,∠ADE+∠EDB=90°,∠DBC+∠CGB=90°,
∴∠EDB=∠CGB,又∠DGF=∠CGB,
∴∠EDB=∠DGF,
∴FA=FG,
∵=,设EF=3k,AE=4k,则AF=DF=FG=5k,DE=8k,
在Rt△ADE中,AD==4k,
∵AB是直径,
∴∠ADG=∠GCB=90°,
∵∠AGD=∠CGB,
∴cs∠CGB=cs∠AGD,
∴=,
在Rt△ADG中,DG==2k,
∴==,
故答案为:.
【点评】本题考查的是圆的有关性质、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,学会利用参数解决问题,属于中考常考题型.
6.(2018年江苏省泰州市•3分)如图,△ABC中,∠ACB=90°,sinA=,AC=12,将△ABC绕点C顺时针旋转90°得到△A'B'C,P为线段A′B'上的动点,以点P为圆心,PA′长为半径作⊙P,当⊙P与△ABC的边相切时,⊙P的半径为 或 .
【分析】分两种情形分别求解:如图1中,当⊙P与直线AC相切于点Q时,如图2中,当⊙P与AB相切于点T时,
【解答】解:如图1中,当⊙P与直线AC相切于点Q时,连接PQ.
设PQ=PA′=r,
∵PQ∥CA′,
∴=,
∴=,
∴r=.
2.如图2中,当⊙P与AB相切于点T时,易证A′、B′、T共线,
∵△A′BT∽△ABC,
∴=,
∴=,
∴A′T=,
∴r=A′T=.
综上所述,⊙P的半径为或.
【点评】本题考查切线的性质、勾股定理、锐角三角函数、相似三角形的判定和性质、平行线分线段成比例定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.
7.(2018•北京•2分) 如图,点,,,在上,,,,则________.
【答案】
【解析】∵,∴,∴,
∵,∴.
【考点】圆周角定理,三角形内角和定理
8.(2018·湖北省孝感·3分)已知⊙O的半径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16cm,CD=12cm,则弦AB和CD之间的距离是 2或14 cm.
【分析】分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可,小心别漏解.
【解答】解:①当弦AB和CD在圆心同侧时,如图,
∵AB=16cm,CD=12cm,
∴AE=8cm,CF=6cm,
∵OA=OC=10cm,
∴EO=6cm,OF=8cm,
∴EF=OF﹣OE=2cm;
②当弦AB和CD在圆心异侧时,如图,
∵AB=16cm,CD=12cm,
∴AF=8cm,CE=6cm,
∵OA=OC=10cm,
∴OF=6cm,OE=8cm,
∴EF=OF+OE=14cm.
∴AB与CD之间的距离为14cm或2cm.
故答案为:2或14.
【点评】本题考查了勾股定理和垂径定理的应用.此题难度适中,解题的关键是注意掌握数形结合思想与分类讨论思想的应用,小心别漏解.
9. (2018•江苏扬州•3分)如图,已知⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,则AB= 2 .
【分析】根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB的度数,然后根据勾股定理即可求得AB的长.
【解答】解:连接AD、AE、OA、OB,
∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,
∴∠ADB=45°,
∴∠AOB=90°,
∵OA=OB=2,
∴AB=2,
故答案为:2.
【点评】本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
三.解答题
(要求同上一)
1. (2018•山东淄博•8分)如图,以AB为直径的⊙O外接于△ABC,过A点的切线AP与BC的延长线交于点P,∠APB的平分线分别交AB,AC于点D,E,其中AE,BD(AE<BD)的长是一元二次方程x2﹣5x+6=0的两个实数根.
(1)求证:PA•BD=PB•AE;
(2)在线段BC上是否存在一点M,使得四边形ADME是菱形?若存在,请给予证明,并求其面积;若不存在,说明理由.
【考点】MR:圆的综合题.
【分析】(1)易证∠APE=∠BPD,∠EAP=∠B,从而可知△PAE∽△PBD,利用相似三角形的性质即可求出答案.
(2)过点D作DF⊥PB于点F,作DG⊥AC于点G,易求得AE=2,BD=3,由(1)可知:,从而可知cs∠BDF=cs∠BAC=cs∠APC=,从而可求出AD和DG的长度,进而证明四边形ADFE是菱形,此时F点即为M点,利用平行四边形的面积即可求出菱形ADFE的面积.
【解答】解:(1)∵DP平分∠APB,
∴∠APE=∠BPD,
∵AP与⊙O相切,
∴∠BAP=∠BAC+∠EAP=90°,
∵AB是⊙O的直径,
∴∠ACB=∠BAC+∠B=90°,
∴∠EAP=∠B,
∴△PAE∽△PBD,
∴,
∴PA•BD=PB•AE;
(2)过点D作DF⊥PB于点F,作DG⊥AC于点G,
∵DP平分∠APB,
AD⊥AP,DF⊥PB,
∴AD=DF,
∵∠EAP=∠B,
∴∠APC=∠BAC,
易证:DF∥AC,
∴∠BDF=∠BAC,
由于AE,BD(AE<BD)的长是x2﹣5x+6=0,
解得:AE=2,BD=3,
∴由(1)可知:,
∴cs∠APC==,
∴cs∠BDF=cs∠APC=,
∴,
∴DF=2,
∴DF=AE,
∴四边形ADFE是平行四边形,
∵AD=AE,
∴四边形ADFE是菱形,
此时点F即为M点,
∵cs∠BAC=cs∠APC=,
∴sin∠BAC=,
∴,
∴DG=,
∴在线段BC上是否存在一点M,使得四边形ADME是菱形
其面积为:DG•AE=2×=
【点评】本题考查圆的综合问题,涉及圆周角定理,锐角三角函数的定义,平行四边形的判定及其面积公式,相似三角形的判定与性质,综合程度较高,考查学生的灵活运用知识的能力.
2 、(2018·湖北省宜昌·8分)如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.
(1)求证:四边形ABFC是菱形;
(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.
【分析】(1)根据对角线相互平分的四边形是平行四边形,证明是平行四边形,再根据邻边相等的平行四边形是菱形即可证明;
(2)设CD=x,连接BD.利用勾股定理构建方程即可解决问题;
【解答】(1)证明:∵AB是直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,
∴BE=CE,∵AE=EF,∴四边形ABFC是平行四边形,
∵AC=AB,∴四边形ABFC是菱形.
(2)设CD=x.连接BD.∵AB是直径,
∴∠ADB=∠BDC=90°,∴AB2﹣AD2=CB2﹣CD2,
∴(7+x)2﹣72=42﹣x2,解得x=1或﹣8(舍弃)∴AC=8,BD==,
∴S菱形ABFC=8.
【点评】本题考查平行四边形的判定和性质、菱形的判定、线段的垂直平分线的性质勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
3(2018•安徽•分) 如图,⊙O为锐角△ABC的外接圆,半径为5.
(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧BC的交点E(保留作图痕迹,不写作法);
(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.
【答案】(1)画图见解析;(2)CE=
【解析】【分析】(1)以点A为圆心,以任意长为半径画弧,分别与AB、AC有交点,再分别以这两个交点为圆心,以大于这两点距离的一半为半径画弧,两弧交于一点,过点A与这点作射线,与圆交于点E ,据此作图即可;
(2)连接OE交BC于点F,连接OC、CE,由AE平分∠BAC,可推导得出OE⊥BC,然后在Rt△OFC中,由勾股定理可求得FC的长,在Rt△EFC中,由勾股定理即可求得CE的长.
【详解】(1)如图所示,射线AE就是所求作的角平分线;
(2)连接OE交BC于点F,连接OC、CE,
∵AE平分∠BAC,
∴,
∴OE⊥BC,EF=3,∴OF=5-3=2,
在Rt△OFC中,由勾股定理可得FC==,
在Rt△EFC中,由勾股定理可得CE==.
【点睛】本题考查了尺规作图——作角平分线,垂径定理等,熟练掌握角平分线的作图方法、推导得出OE⊥BC是解题的关键.
4.(2018年江苏省南京市)如图,在正方形ABCD中,E是AB上一点,连接DE.过点A作AF⊥DE,垂足为F,⊙O经过点C、D、F,与AD相交于点G.
(1)求证:△AFG∽△DFC;
(2)若正方形ABCD的边长为4,AE=1,求⊙O的半径.
【分析】(1)欲证明△AFG∽△DFC,只要证明∠FAG=∠FDC,∠AGF=∠FCD;
(2)首先证明CG是直径,求出CG即可解决问题;
【解答】(1)证明:在正方形ABCD中,∠ADC=90°,
∴∠CDF+∠ADF=90°,
∵AF⊥DE,
∴∠AFD=90°,
∴∠DAF+∠ADF=90°,
∴∠DAF=∠CDF,
∵四边形GFCD是⊙O的内接四边形,
∴∠FCD+∠DGF=180°,
∵∠FGA+∠DGF=180°,
∴∠FGA=∠FCD,
∴△AFG∽△DFC.
(2)解:如图,连接CG.
∵∠EAD=∠AFD=90°,∠EDA=∠ADF,
∴△EDA∽△ADF,
∴=,即=,
∵△AFG∽△DFC,
∴=,
∴=,
在正方形ABCD中,DA=DC,
∴AG=EA=1,DG=DA﹣AG=4﹣1=3,
∴CG==5,
∵∠CDG=90°,
∴CG是⊙O的直径,
∴⊙O的半径为.
【点评】本题考查相似三角形的判定和性质、正方形的性质、圆周角定理等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.
5.(2018•株洲市)如图,已知AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB对称的两个点,连接OC、AC,且∠BOC<90°,直线BC和直线AD相交于点E,过点C作直线CG与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE
(1)求证:直线CG为⊙O的切线;
(2)若点H为线段OB上一点,连接CH,满足CB=CH,
①△CBH∽△OBC
②求OH+HC的最大值
【答案】(1)证明见解析;(2)①证明见解析;②5.
【解析】分析:(1)由题意可知:∠CAB=∠GAF,由圆的性质可知:∠CAB=∠OCA,所以∠OCA=∠GCE,从而可证明直线CG是⊙O的切线;
(2)①由于CB=CH,所以∠CBH=∠CHB,易证∠CBH=∠OCB,从而可证明△CBH∽△OBC;
②由△CBH∽△OBC可知:,所以HB=,由于BC=HC,所以OH+HC=4−+BC,利用二次函数的性质即可求出OH+HC的最大值.
详解:(1)由题意可知:∠CAB=∠GAF,
∵AB是⊙O的直径,
∴∠ACB=90°
∵OA=OC,
∴∠CAB=∠OCA,
∴∠OCA+∠OCB=90°,
∵∠GAF=∠GCE,
∴∠GCE+∠OCB=∠OCA+∠OCB=90°,
∵OC是⊙O的半径,
∴直线CG是⊙O的切线;
(2)①∵CB=CH,
∴∠CBH=∠CHB,
∵OB=OC,
∴∠CBH=∠OCB,
∴△CBH∽△OBC
②由△CBH∽△OBC可知:
∵AB=8,
∴BC2=HB•OC=4HB,
∴HB=,
∴OH=OB-HB=4-
∵CB=CH,
∴OH+HC=4−+BC,
当∠BOC=90°,
此时BC=4
∵∠BOC<90°,
∴0<BC<4,
令BC=x则CH=x,BH=
当x=2时,
∴OH+HC可取得最大值,最大值为5
点睛:本题考查圆的综合问题,涉及二次函数的性质,相似三角形的性质与判定,切线的判定等知识,综合程度较高,需要学生灵活运用所知识.
6.(2018年江苏省宿迁)如图,AB、AC分别是⊙O的直径和弦,OD⊥AC于点D,过点A作⊙O的切线与OD的延长线交于点P,PC、AB的延长线交于点F.
(1)求证:PC是⊙O的切线;
(2)若∠ABC=600,AB=10,求线段CF的长,
【答案】(1)证明:连接OC,
∵OA=OC,OD⊥AC,
∴OD是AC的垂直平分线,
∴PA=PC,
在△PAO和△PCO中,
,
∴△PAO≌△PCO(SSS),
∴∠PAO=∠PCO=90°,
∴PC是⊙O的切线.
(2)解:∵PC是⊙O的切线.∴∠FCO=∠PCO=90°,
∵∠ABC=60°,OB=OC,
∴△OCB是等边三角形,
又∵AB=10,
∴OB=OC=5,
在Rt△FCO中,
∴tan60°= = ,
∴CF=5 .
【考点】全等三角形的判定与性质,等边三角形的判定与性质,切线的判定与性质,锐角三角函数的定义,线段垂直平分线的判定
【解析】【分析】(1)连接OC,根据垂直平分线的判定得OD是AC的垂直平分线,再由垂直平分线的性质得PA=PC,根据SSS得△PAO≌△PCO(SSS),由全等三角形性质得∠PAO=∠PCO=90°,即PC是⊙O的切线.
(2)由切线性质得∠FCO=∠PCO=90°,根据有一个角是60度的等腰三角形是等边三角形得△OCB是等边三角形,在Rt△FCO中,根据正切的三角函数定义即可求出CF值.
7(2018年江苏省泰州市•10分)如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC于点E.
(1)试判断DE与⊙O的位置关系,并说明理由;
(2)过点D作DF⊥AB于点F,若BE=3,DF=3,求图中阴影部分的面积.
【分析】(1)直接利用角平分线的定义结合平行线的判定与性质得出∠DEB=∠EDO=90°,进而得出答案;
(2)利用勾股定理结合扇形面积求法分别分析得出答案.
【解答】解:(1)DE与⊙O相切,
理由:连接DO,
∵DO=BO,
∴∠ODB=∠OBD,
∵∠ABC的平分线交⊙O于点D,
∴∠EBD=∠DBO,
∴∠EBD=∠BDO,
∴DO∥BE,
∵DE⊥BC,
∴∠DEB=∠EDO=90°,
∴DE与⊙O相切;
(2)∵∠ABC的平分线交⊙O于点D,DE⊥BE,DF⊥AB,
∴DE=DF=3,
∵BE=3,
∴BD==6,
∵sin∠DBF==,
∴∠DBA=30°,
∴∠DOF=60°,
∴sin60°===,
∴DO=2,
则FO=,
故图中阴影部分的面积为:﹣××3=2π﹣.
【点评】此题主要考查了切线的判定方法以及扇形面积求法等知识,正确得出DO的长是解题关键.
8(2018·天津·10分)已知是的直径,弦与相交,.
(Ⅰ)如图①,若为的中点,求和的大小;
(Ⅱ)如图②,过点作的切线,与的延长线交于点,若,求的大小.
【答案】(1)52°,45°;(2)26°
【解析】分析:(Ⅰ)运用直径所对的圆周角是直角以及圆周角的度数等于它所对弧的度数求解即可;
(Ⅱ)运用圆周角定理求解即可.
详解:(Ⅰ)∵是的直径,∴.
∴.
又∴,∴.
由为的中点,得.
∴.
∴.
(Ⅱ)如图,连接.
∵切于点,
∴,即.
由,又,
∴是的外角,
∴.
∴.
又,得.
∴.
点睛:本题考查了圆周角定理,切线的性质以及等腰三角形的性质,正确的作出辅助线是解题的关键.
9(2018·浙江衢州·10分)如图,已知AB为⊙O直径,AC是⊙O的切线,连接BC交⊙O于点F,取的中点D,连接AD交BC于点E,过点E作EH⊥AB于H.
(1)求证:△HBE∽△ABC;
(2)若CF=4,BF=5,求AC和EH的长.
【考点】圆周角定理、切线的性质、角平分线的性质、相似三角形的判定和性质
【分析】(1)根据切线的性质即可证明:∠CAB=∠EHB,由此即可解决问题;
(2)连接AF.由△CAF∽△CBA,推出CA2=CF•CB=36,推出CA=6,AB==3,AF==2,由Rt△AEF≌Rt△AEH,推出AF=AH=2,设EF=EH=x.在Rt△EHB中,可得(5﹣x)2=x2+()2,解方程即可解决问题;
【解答】解:(1)∵AC是⊙O的切线,∴CA⊥AB.
∵EH⊥AB,∴∠EHB=∠CAB.
∵∠EBH=∠CBA,∴△HBE∽△ABC.
(2)连接AF.
∵AB是直径,∴∠AFB=90°.
∵∠C=∠C,∠CAB=∠AFC,∴△CAF∽△CBA,∴CA2=CF•CB=36,∴CA=6,AB==3,AF==2.
∵=,∴∠EAF=∠EAH.
∵EF⊥AF,EH⊥AB,∴EF=EH.
∵AE=AE,∴Rt△AEF≌Rt△AEH,∴AF=AH=2,设EF=EH=x.在Rt△EHB中,(5﹣x)2=x2+()2,∴x=2,∴EH=2.
【点评】本题考查了相似三角形的判定和性质、圆周角定理、切线的性质、角平分线的性质等知识,解题的关键是学会添加常用辅助线,正确寻找相似三角形解决问题.
10.(2018·广东广州·14分)已知抛物线 。
(1)证明:该抛物线与x轴总有两个不同的交点。
(2)设该抛物线与x轴的两个交点分别为A,B(点A在点B的右侧),与y轴交于点C,A,B,C三点都在圆P上。①试判断:不论m取任何正数,圆P是否经过y轴上某个定点?若是,求出该定点的坐标,若不是,说明理由;
②若点C关于直线 的对称点为点E,点D(0,1),连接BE,BD,DE,△BDE的周长记为 ,圆P的半径记为 ,求 的值。
【答案】(1)证明:当抛物线与x轴相交时,令y=0,得:
x2+mx-m-4=0
∴△=m2+4(2m+4)=m2+8m+16=(m+4)2
∵m>0,
∴(m+4)2>0,
∴该抛物线与x轴总有两个不同的交点。
(2)解:①令y=x2+mx-2m-4=(x-2)(x+m+2)=0,
解得:x1=2,x2=-m-2,
∵抛物线与x轴的两个交点分别为A,B(点A在点B的右侧),
∴A(2,0),B(-2-m,0),
∵抛物线与y轴交于点C,
∴C(0,-2m-4),
设⊙P的圆心为P(x0 , y0),
则x0= = ,
∴P( ,y0),
且PA=PC,则PA2=PC2 ,
则
解得 ,
∴P( , ),
∴⊙P与y轴的另一交点的坐标为(0,b)
则 ,
∴b=1,
∴⊙P经过y轴上一个定点,该定点坐标为(0,1)
②由①知,D(0,1)在⊙P上,
∵E是点C关于直线 的对称点,且⊙P的圆心P( , ),
∴E(-m,-2m-4)且点E在⊙P上,
即D,E,C均在⊙P上的点,且∠DCE=90°,
∴DE为⊙P的直径,
∴∠DBE=90°,△DBE为直角三角形,
∵D(0,1),E(-m,-2m-4),B(-2-m,0),
∴DB= ,
BE= = =
∴BE=2DB,
在Rt△DBE中,设DB=x,则BE=2x,
∴DE= = ,
∴△BDE的周长l=DB+BE+DE=x+2x+ =
⊙P的半径r= =
∴ = =
【考点】一元二次方程根的判别式及应用,二次函数图像与坐标轴的交点问题,两点间的距离,勾股定理,圆周角定理
【解析】【分析】(1)当抛物线与x轴相交时,即y=0,根据一元二次方程根的判别式△=b2-4ac=m2+4(2m+4)=m2+8m+16=(m+4)2>0,从而得出该抛物线与x轴总有两个不同的交点.
(2)①抛物线与x轴的两个交点,即y=0,因式分解得出A(2,0),B(-2-m,0);抛物线与y轴交点,即x=0,得出C(0,-2m-4);设⊙P的圆心为P(x0 , y0),由P为AB中点,得出P点横坐标,再PA=PC,根据两点间距离公式得出P点纵坐标,即P( , );设⊙P与y轴的另一交点的坐标为(0,b),根据中点坐标公式得b=1,即⊙P经过y轴上一个定点,该定点坐标为(0,1).
②由①知,D(0,1)在⊙P上,由)①知⊙P的圆心P( , ),由圆周角定理得△DBE为直角三角形,再根据两点间距离公式得DB= ,BE= ,由BE=2DB,在Rt△DBE中,设DB=x,则BE=2x,根据勾股定理得DE= ,由三角形周长公式得
△BDE的周长l= ,又⊙P的半径r= ,从而得出 值.
11(2018·广东深圳·9分)如图:在 中,BC=2,AB=AC,点D为AC上的动点,且 .
(1)求AB的长度;
(2)求AD·AE的值;
(3)过A点作AH⊥BD,求证:BH=CD+DH.
【答案】(1)解:作AM⊥BC,
∵AB=AC,BC=2,AM⊥BC,
∴BM=CM= BC=1,
在Rt△AMB中,
∵csB= ,BM=1,
∴AB=BM÷csB=1÷ = .
(2)解:连接CD,∵AB=AC,
∴∠ACB=∠ABC,
∵四边形ABCD内接于圆O,
∴∠ADC+∠ABC=180°,
又∵∠ACE+∠ACB=180°,
∴∠ADC=∠ACE,
∵∠CAE=∠CAD,
∴△EAC∽△CAD,
∴ ,
∴AD·AE=AC2=AB2=( )2=10.
(3)证明:在BD上取一点N,使得BN=CD,
在△ABN和△ACD中
∵
∴△ABN≌△ACD(SAS),
∴AN=AD,
∵AH⊥BD,AN=AD,
∴NH=DH,
又∵BN=CD,NH=DH,
∴BH=BN+NH=CD+DH.
【考点】全等三角形的判定与性质,等腰三角形的性质,圆内接四边形的性质,相似三角形的判定与性质,锐角三角函数的定义
【解析】【分析】(1)作AM⊥BC,由等腰三角形三线合一的性质得BM=CM= BC=1,在Rt△AMB中,根据余弦定义得csB= ,由此求出AB.
(2)连接CD,根据等腰三角形性质等边对等角得∠ACB=∠ABC,再由圆内接四边形性质和等角的补角相等得∠ADC=∠ACE;由相似三角形的判定得△EAC∽△CAD,根据相似三角形的性质得
; 从而得AD·AE=AC2=AB2.
(3)在BD上取一点N,使得BN=CD,根据SAS得△ABN≌△ACD,再由全等三角形的性质得AN=AD,根据等腰三角形三线合一的性质得NH=DH,从而得BH=BN+NH=CD+DH.
12(2018·广东·9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.
(1)证明:OD∥BC;
(2)若tan∠ABC=2,证明:DA与⊙O相切;
(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.
【分析】(1)连接OC,证△OAD≌△OCD得∠ADO=∠CDO,由AD=CD知DE⊥AC,再由AB为直径知BC⊥AC,从而得OD∥BC;
(2)根据tan∠ABC=2可设BC=a、则AC=2a、AD=AB==,证OE为中位线知OE=a、AE=CE=AC=a,进一步求得DE==2a,再△AOD中利用勾股定理逆定理证∠OAD=90°即可得;
(3)先证△AFD∽△BAD得DF•BD=AD2①,再证△AED∽△OAD得OD•DE=AD2②,由①②得DF•BD=OD•DE,即=,结合∠EDF=∠BDO知△EDF∽△BDO,据此可得=,结合(2)可得相关线段的长,代入计算可得.
【解答】解:(1)连接OC,
在△OAD和△OCD中,
∵,
∴△OAD≌△OCD(SSS),
∴∠ADO=∠CDO,
又AD=CD,
∴DE⊥AC,
∵AB为⊙O的直径,
∴∠ACB=90°,
∴∠ACB=90°,即BC⊥AC,
∴OD∥BC;
(2)∵tan∠ABC==2,
∴设BC=a、则AC=2a,
∴AD=AB==,
∵OE∥BC,且AO=BO,
∴OE=BC=a,AE=CE=AC=a,
在△AED中,DE==2a,
在△AOD中,AO2+AD2=()2+(a)2=a2,OD2=(OF+DF)2=(a+2a)2=a2,
∴AO2+AD2=OD2,
∴∠OAD=90°,
则DA与⊙O相切;
(3)连接AF,
∵AB是⊙O的直径,
∴∠AFD=∠BAD=90°,
∵∠ADF=∠BDA,
∴△AFD∽△BAD,
∴=,即DF•BD=AD2①,
又∵∠AED=∠OAD=90°,∠ADE=∠ODA,
∴△AED∽△OAD,
∴=,即OD•DE=AD2②,
由①②可得DF•BD=OD•DE,即=,
又∵∠EDF=∠BDO,
∴△EDF∽△BDO,
∵BC=1,
∴AB=AD=、OD=、ED=2、BD=、OB=,
∴=,即=,
解得:EF=.
【点评】本题主要考查圆的综合问题,解题的关键是掌握等腰三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质及勾股定理逆定理等知识点.
13(2018•广西桂林•10分)如图1,已知⊙O是ΔADB的外接圆,∠ADB的平分线DC交AB于点M,交⊙O于点C,连接AC,BC.
(1)求证:AC=BC;
(2)如图2,在图1 的基础上做⊙O的直径CF交AB于点E,连接AF,过点A作⊙O的切线AH,若AH//BC,求∠ACF的度数;
(3)在(2)的条件下,若ΔABD的面积为,ΔABD与ΔABC的面积比为2:9,求CD的长.
【答案】(1)证明见解析;(2)30°;(3)
【解析】分析:(1)运用“在同圆或等圆中,弧相等,所对的弦相等”可求解;
(2)连接AO并延长交BC于I交⊙O于J,由AH是⊙O的切线且AH∥BC得AI⊥BC,易证∠IAC=30°,故可得∠ABC=60°=∠F=∠ACB,由CF是直径可得∠ACF的度数;
(3)过点D作DG⊥AB ,连接AO,知ABC为等边三角形,求出AB、AE的长,在RtΔAEO中,求出AO的长,得CF的长,再求DG 的长,运用勾股定理易求CD的长.
详解:(1)∵DC平分∠ADB ∴∠ADC=∠BDC ∴AC=BC
(2)连接AO并延长交BC于I交⊙O于J
∵AH是⊙O的切线且AH∥BC
∴AI⊥BC
∴BI=IC
∵AC=BC
∴IC=AC
∴∠IAC=30°
∴∠ABC=60°=∠F=∠ACB
∵FC是直径
∴∠FAC=90°
∴∠ACF=180°-90°-60°=30°
(3)过点D作,连接AO
由(1)(2)知ABC为等边三角形
∵∠ACF=30°
∴
∴AE=BE
∴
∴AB=
∴
在RtΔAEO中,设EO=x,则AO=2x
∴
∴
∴x=6,⊙O的半径为6
∴CF=12
∵
∴DG=2
过点D作,连接OD
∵,
∴CF//DG
∴四边形G’DGE为矩形
∴
在RtΔ中
∴
∴
点睛:本题是一道圆的综合题.考查了圆的基本概念,垂径定理,勾股定理,圆周角定理等相关知识.比较复杂,熟记相关概念是解题关键.
14.(2018•河北•10分)如图15,点在数轴上对应的数为26,以原点为圆心,为半径作优弧,使点在右下方,且.在优弧上任取一点,且能过作直线交数轴于点,设在数轴上对应的数为,连接.
(1)若优弧上一段的长为,求的度数及的值;
(2)求的最小值,并指出此时直线与所在圆的位置关系;
(3)若线段的长为,直接写出这时的值.
相关试卷
这是一份专题23 圆的有关性质(共30道)-中考数学真题分项汇编(全国通用),文件包含专题23圆的有关性质共30道原卷版docx、专题23圆的有关性质共30道解析版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。
这是一份专题23 圆的有关性质(共30道)-2023年全国各地中考数学真题分项汇编(全国通用),文件包含专题23圆的有关性质共30道原卷版docx、专题23圆的有关性质共30道解析版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。
这是一份2023年中考数学真题分类汇编:圆的有关性质(含解析),共40页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。