开学活动
搜索
    上传资料 赚现金

    中考数学真题分类汇编第一期专题23直角三角形与勾股定理试题含解析

    中考数学真题分类汇编第一期专题23直角三角形与勾股定理试题含解析第1页
    中考数学真题分类汇编第一期专题23直角三角形与勾股定理试题含解析第2页
    中考数学真题分类汇编第一期专题23直角三角形与勾股定理试题含解析第3页
    还剩28页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考数学真题分类汇编第一期专题23直角三角形与勾股定理试题含解析

    展开

    这是一份中考数学真题分类汇编第一期专题23直角三角形与勾股定理试题含解析,共31页。试卷主要包含了选择题等内容,欢迎下载使用。
    1.(2018•山西•3分)“算经十书”是指 汉唐一千多年间的 十 部著名数学著作,它 们曾经是隋唐时期 国 子监算学科 的 教 科 书 , 这 些 流 传 下 来 的 古 算 书 中 凝 聚 着 历 代 数 学 家 的 劳 动 成 果 .下 列 四 部 著 作 中 , 不 属 于 我 国古代数学著作的 是 ()
    A.《九章算术》B. 《几何原本》 C. 《 海 岛 算 经 》 D. 《 周 髀 算 经 》
    【答案】 B
    【考点】 数学文化
    【解析 】《 几 何 原 本 》 的 作 者 是 欧 几 里 得

    2. (2018•山东滨州•3分)在直角三角形中,若勾为3,股为4,则弦为( )
    A.5B.6C.7D.8
    【分析】直接根据勾股定理求解即可.
    【解答】解:∵在直角三角形中,勾为3,股为4,
    ∴弦为=5.
    故选:A.
    【点评】本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
    3. (2018·湖北省孝感·3分)如图,菱形ABCD的对角线AC,BD相交于点O,AC=10,BD=24,则菱形ABCD的周长为( )
    A.52B.48C.40D.20
    【分析】由勾股定理即可求得AB的长,继而求得菱形ABCD的周长.
    【解答】解:∵菱形ABCD中,BD=24,AC=10,
    ∴OB=12,OA=5,
    在Rt△ABO中,AB==13,∴菱形ABCD的周长=4AB=52,
    故选:A.
    【点评】此题考查了菱形的性质、勾股定理等知识,解题的关键是熟练掌握菱形的性质,属于中考常考题型.
    4. (2018·山东青岛·3分)如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点.沿过点E的直线折叠,使点B与点A重合,折痕现交于点F.已知EF=,则BC的长是( )
    A.B.C.3D.
    【分析】由折叠的性质可知∠B=∠EAF=45°,所以可求出∠AFB=90°,再直角三角形的性质可知EF=AB,所以AB=AC的长可求,再利用勾股定理即可求出BC的长.
    【解答】解:
    ∵沿过点E的直线折叠,使点B与点A重合,
    ∴∠B=∠EAF=45°,
    ∴∠AFB=90°,
    ∵点E为AB中点,
    ∴EF=AB,EF=,
    ∴AB=AC=3,
    ∵∠BAC=90°,
    ∴BC==3,
    故选:B.
    【点评】本题考查了折叠的性质、等腰直角三角形的判断和性质以及勾股定理的运用,求出∠AFB=90°是解题的关键.
    5. (2018·四川自贡·4分)如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC的长为( )
    A.B.C.D.
    【分析】延长BO交圆于D,连接CD,则∠BCD=90°,∠D=∠A=60°;又BD=2R,根据锐角三角函数的定义得BC=R.
    【解答】解:延长BO交⊙O于D,连接CD,
    则∠BCD=90°,∠D=∠A=60°,
    ∴∠CBD=30°,
    ∵BD=2R,
    ∴DC=R,
    ∴BC=R,
    故选:D.
    【点评】此题综合运用了圆周角定理、直角三角形30°角的性质、勾股定理,注意:作直径构造直角三角形是解决本题的关键.
    6. (2018·台湾·分)如图1的矩形ABCD中,有一点E在AD上,今以BE为折线将A点往右折,如图2所示,再作过A点且与CD垂直的直线,交CD于F点,如图3所示,若AB=6,BC=13,∠BEA=60°,则图3中AF的长度为何?( )
    A.2B.4C.2D.4
    【分析】作AH⊥BC于H.则四边形AFCH是矩形,AF=CH,AH=CF=3.在Rt△ABH中,解直角三角形即可解决问题;
    【解答】解:作AH⊥BC于H.则四边形AFCH是矩形,AF=CH,AH=CF=3.
    在Rt△AHB中,∠ABH=30°,
    ∴BH=AB•cs30°=9,
    ∴CH=BC﹣BH=13﹣9=4,
    ∴AF=CH=4,
    故选:B.
    【点评】本题考查翻折变换、矩形的性质、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
    7. (2018·台湾·分)如图,坐标平面上,A、B两点分别为圆P与x轴、y轴的交点,有一直线L通过P点且与AB垂直,C点为L与y轴的交点.若A、B、C的坐标分别为(a,0),(0,4),(0,﹣5),其中a<0,则a的值为何?( )
    A.﹣2B.﹣2C.﹣8D.﹣7
    【分析】连接AC,根据线段垂直平分线的性质得到AC=BC,根据勾股定理求出OA,得到答案.
    【解答】解:连接AC,
    由题意得,BC=OB+OC=9,
    ∵直线L通过P点且与AB垂直,
    ∴直线L是线段AB的垂直平分线,
    ∴AC=BC=9,
    在Rt△AOC中,AO==2,
    ∵a<0,
    ∴a=﹣2,
    故选:A.
    【点评】本题考查的是垂径定理、坐标与图形的性质以及勾股定理,掌握垂径定理的推论是解题的关键.
    8.(2018•湖北黄冈•3分)如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB边上的中线,AD=2,CE=5,则CD=
    A.2 B.3 C.4 D.2
    (第5题图)
    【考点】直角三角形斜边上的中线的性质,勾股定理。
    【分析】由直角三角形斜边上的中线等于斜边的一半,可得CE=AE=5,又知AD=2,可得DE=AE-AD=5-2=3,在Rt△CDE中,运用勾股定理可得直角边CD的长。
    【解答】解:在Rt△ABC中,∠ACB=90°,CE为AB边上的中线,
    ∴CE=AE=5,
    又∵AD=2,
    ∴DE=AE-AD=5-2=3,
    ∵CD为AB边上的高
    ∴∠CDE=90°,
    ∴△CDE 为Rt△
    ∴CD===4
    故选C.
    【点评】本题考查了直角三角形斜边上的中线的性质,勾股定理。得出DE的长是解题的关键。
    9. (2018•广西桂林•3分)如图,在正方形ABCD中,AB=3,点M在CD的边上,且DM=1,ΔAEM与ΔADM关于AM所在的直线对称,将ΔADM按顺时针方向绕点A旋转90°得到ΔABF,连接EF,则线段EF的长为( )
    A. 3 B. C. D.
    【答案】C
    【解析】分析:连接BM.证明△AFE≌△AMB得FE=MB,再运用勾股定理求出BM的长即可.
    详解:连接BM,如图,
    由旋转的性质得:AM=AF.
    ∵四边形ABCD是正方形,
    ∴AD=AB=BC=CD,∠BAD=∠C=90°,
    ∵ΔAEM与ΔADM关于AM所在的直线对称,
    ∴∠DAM=∠EAM.
    ∵∠DAM+∠BAM=∠FAE+∠EAM=90°,
    ∴∠BAM=∠EAF,
    ∴△AFE≌△AMB
    ∴FE=BM.
    在Rt△BCM中,BC=3,CM=CD-DM=3-1=2,
    ∴BM=
    ∴FE=.
    故选C.
    点睛:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.
    10.(2018四川省泸州市3分)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为( )
    A.9B.6C.4D.3
    【分析】由题意可知:中间小正方形的边长为:a﹣b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.
    【解答】解:由题意可知:中间小正方形的边长为:a﹣b,
    ∵每一个直角三角形的面积为:ab=×8=4,
    ∴4×ab+(a﹣b)2=25,
    ∴(a﹣b)2=25﹣16=9,
    ∴a﹣b=3,
    故选:D.
    【点评】本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式,本题属于基础题型.
    二.填空题
    1.(2018•湖北黄冈•3分)如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为_________________cm(杯壁厚度不计).
    (第13题图)
    【考点】平面展开-最短路径问题.
    【分析】将圆柱体侧面展开,过B作BQ⊥EF于Q,作A关于EH的对称点A′,连接A′B交EH于P,连接AP,则AP+PB就是蚂蚁到达蜂蜜的最短距离,求出A′Q,BQ,根据勾股定理求出A′B即可.
    【解答】解:沿过A的圆柱的高剪开,得出矩形EFGH,过B作BQ⊥EF于Q,作A关于EH的对称点A′,连接A′B交EH于P,连接AP,则AP+PB就是蚂蚁到达蜂蜜的最短距离,


    ∵AE=A′E,A′P=AP,
    ∴AP+PB=A′P+PB=A′B,
    ∵BQ=×32cm=16cm,A′Q=14cm-5cm+3cm=12cm,
    在Rt△A′QB中,由勾股定理得:A′B==20cm.
    故答案为:20.
    【点评】本题考查了平面展开-最短路径问题.将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.
    2. (2018·天津·3分)如图,在边长为4的等边中,,分别为,的中点,于点,为的中点,连接,则的长为__________.
    【答案】
    【解析】分析:连接DE,根据题意可得ΔDEG是直角三角形,然后根据勾股定理即可求解DG的长.
    详解:连接DE,
    ∵D、E分别是AB、BC的中点,
    ∴DE∥AC,DE=AC
    ∵ΔABC是等边三角形,且BC=4
    ∴∠DEB=60°,DE=2
    ∵EF⊥AC,∠C=60°,EC=2
    ∴∠FEC=30°,EF=
    ∴∠DEG=180°-60°-30°=90°
    ∵G是EF的中点,
    ∴EG=.
    在RtΔDEG中,DG=
    故答案为:.
    点睛:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.
    3 (2018·天津·3分)如图,在每个小正方形的边长为1的网格中,的顶点,,均在格点上.
    (1)的大小为__________(度);
    (2)在如图所示的网格中,是边上任意一点.为中心,取旋转角等于,把点逆时针旋转,点的对应点为.当最短时,请用无刻度的直尺,画出点,并简要说明点的位置是如何找到的(不要求证明)__________.
    【答案】 (1). ; (2). 见解析
    【解析】分析:(1)利用勾股定理即可解决问题;
    (2)如图,取格点,,连接交于点;取格点,,连接交延长线于点;取格点,连接交延长线于点,则点即为所求.
    详解:(1)∵每个小正方形的边长为1,
    ∴AC=,BC=,AB=,


    ∴ΔABC是直角三角形,且∠C=90°
    故答案为90;
    (2)如图,即为所求.
    点睛:本题考查作图-应用与设计、勾股定理等知识,解题的关键是利用数形结合的思想解决问题,学会用转化的思想思考问题.
    4. (2018·四川自贡·4分)如图,在△ABC中,AC=BC=2,AB=1,将它沿AB翻折得到△ABD,则四边形ADBC的形状是 菱 形,点P、E、F分别为线段AB、AD、DB的任意点,则PE+PF的最小值是 .
    【分析】根据题意证明四边相等即可得出菱形;作出F关于AB的对称点M,再过M作ME⊥AD,交ABA于点P,此时PE+PF最小,求出ME即可.
    【解答】解:∵△ABC沿AB翻折得到△ABD,
    ∴AC=AD,BC=BD,
    ∵AC=BC,
    ∴AC=AD=BC=BD,
    ∴四边形ADBC是菱形,
    故答案为菱;
    如图
    作出F关于AB的对称点M,再过M作ME⊥AD,交ABA于点P,此时PE+PF最小,此时PE+PF=ME,
    过点A作AN⊥BC,
    ∵AD∥BC,
    ∴ME=AN,
    作CH⊥AB,
    ∵AC=BC,
    ∴AH=,
    由勾股定理可得,CH=,
    ∵,
    可得,AN=,
    ∴ME=AN=,
    ∴PE+PF最小为,
    故答案为.
    【点评】此题主要考查路径和最短问题,会结合轴对称的知识和“垂线段最短”的基本事实分析出最短路径是解题的关键.
    5.(2018·山东青岛·3分)如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为 .
    【分析】根据正方形的四条边都相等可得AB=AD,每一个角都是直角可得∠BAE=∠D=90°,然后利用“边角边”证明△ABE≌△DAF得∠ABE=∠DAF,进一步得∠AGE=∠BGF=90°,从而知GH=BF,利用勾股定理求出BF的长即可得出答案.
    【解答】解:∵四边形ABCD为正方形,
    ∴∠BAE=∠D=90°,AB=AD,
    在△ABE和△DAF中,
    ∵,
    ∴△ABE≌△DAF(SAS),
    ∴∠ABE=∠DAF,
    ∵∠ABE+∠BEA=90°,
    ∴∠DAF+∠BEA=90°,
    ∴∠AGE=∠BGF=90°,
    ∵点H为BF的中点,
    ∴GH=BF,
    ∵BC=5、CF=CD﹣DF=5﹣2=3,
    ∴BF==,
    ∴GH=BF=,
    故答案为:.
    【点评】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形两锐角互余等知识,掌握三角形全等的判定方法与正方形的性质是解题的关键.
    6. (2018•江苏盐城•3分)如图,在直角 中, , , , 、 分别为边 、 上的两个动点,若要使 是等腰三角形且 是直角三角形,则 ________.
    16.【答案】或
    【考点】等腰三角形的判定与性质,相似三角形的判定与性质
    【解析】【解答】解:当△BPQ是直角三角形时,有两种情况:∠BPQ=90度,∠BQP=90度。在直角 中, , , ,则AB=10,AC:BC:AB=3:4:5.( 1 )当∠BPQ=90度,则△BPQ~△BCA,则PQ:BP:BQ=AC:BC:AB=3:4:5,
    设PQ=3x,则BP=4x,BQ=5x,AQ=AB-BQ=10-5x,
    此时∠AQP为钝角,则当△APQ是等腰三角形时,只有AQ=PQ,
    则10-5x=3x,解得x= ,
    则AQ=10-5x= ;
    ( 2 )当∠BQP =90度,则△BQP~△BCA,则PQ:BQ:BP=AC:BC:AB=3:4:5,
    设PQ=3x,则BQ=4x,BP=5x,AQ=AB-BQ=10-4x,
    此时∠AQP为直角,则当△APQ是等腰三角形时,只有AQ=PQ,
    则10-4x=3x,解得x= ,
    则AQ=10-4x= ;
    故答案为: 或
    【分析】要同时使 是等腰三角形且 是直角三角形,要先找突破口,可先确定当△APQ是等腰三角形时,再讨论△BPQ是直角三角形可能的情况;或者先确定△BPQ是直角三角形,再讨论△APQ是等腰三角形的情况;此题先确定△BPQ是直角三角形容易一些:△BPQ是直角三角形有两种情况,根据相似的判定和性质可得到△BQP与△BCA相似,可得到△BQP三边之比,设出未知数表示出三边的长度,再讨论△APQ是等腰三角形时,是哪两条相等,构造方程解出未知数即可,最后求出AQ。
    三.解答题
    1、(2018·湖北省宜昌·8分)如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.
    (1)求证:四边形ABFC是菱形;
    (2)若AD=7,BE=2,求半圆和菱形ABFC的面积.
    【分析】(1)根据对角线相互平分的四边形是平行四边形,证明是平行四边形,再根据邻边相等的平行四边形是菱形即可证明;
    (2)设CD=x,连接BD.利用勾股定理构建方程即可解决问题;
    【解答】(1)证明:∵AB是直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,
    ∴BE=CE,∵AE=EF,∴四边形ABFC是平行四边形,
    ∵AC=AB,∴四边形ABFC是菱形.
    (2)设CD=x.连接BD.∵AB是直径,
    ∴∠ADB=∠BDC=90°,∴AB2﹣AD2=CB2﹣CD2,
    ∴(7+x)2﹣72=42﹣x2,解得x=1或﹣8(舍弃)∴AC=8,BD==,
    ∴S菱形ABFC=8.
    【点评】本题考查平行四边形的判定和性质、菱形的判定、线段的垂直平分线的性质勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
    2. (2018•湖南省永州市•10分)如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB的中点,连接CE并延长交线段AD于点F.
    (1)求证:四边形BCFD为平行四边形;
    (2)若AB=6,求平行四边形BCFD的面积.
    【分析】(1)在Rt△ABC中,E为AB的中点,则CE=AB,BE=AB,得到∠BCE=∠EBC=60°.由△AEF≌△BEC,得∠AFE=∠BCE=60°.又∠D=60°,得∠AFE=∠D=60度.所以FC∥BD,又因为∠BAD=∠ABC=60°,所以AD∥BC,即FD∥BC,则四边形BCFD是平行四边形.
    (2)在Rt△ABC中,求出BC,AC即可解决问题;
    【解答】(1)证明:在△ABC中,∠ACB=90°,∠CAB=30°,
    ∴∠ABC=60°.
    在等边△ABD中,∠BAD=60°,
    ∴∠BAD=∠ABC=60°.
    ∵E为AB的中点,
    ∴AE=BE.
    又∵∠AEF=∠BEC,
    ∴△AEF≌△BEC.
    在△ABC中,∠ACB=90°,E为AB的中点,
    ∴CE=AB,BE=AB.
    ∴CE=AE,
    ∴∠EAC=∠ECA=30°,
    ∴∠BCE=∠EBC=60°.
    又∵△AEF≌△BEC,
    ∴∠AFE=∠BCE=60°.
    又∵∠D=60°,
    ∴∠AFE=∠D=60°.
    ∴FC∥BD.
    又∵∠BAD=∠ABC=60°,
    ∴AD∥BC,即FD∥BC.
    ∴四边形BCFD是平行四边形.
    (2)解:在Rt△ABC中,∵∠BAC=30°,AB=6,
    ∴BC=AB=3,AC=BC=3,
    ∴S平行四边形BCFD=3×=9.
    【点评】本题考查平行四边形的判定和性质、直角三角形斜边中线定理、等边三角形的性质、解直角三角形、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
    3. (2018年江苏省泰州市•12分)对给定的一张矩形纸片ABCD进行如下操作:先沿CE折叠,使点B落在CD边上(如图①),再沿CH折叠,这时发现点E恰好与点D重合(如图②)
    (1)根据以上操作和发现,求的值;
    (2)将该矩形纸片展开.
    ①如图③,折叠该矩形纸片,使点C与点H重合,折痕与AB相交于点P,再将该矩形纸片展开.求证:∠HPC=90°;
    ②不借助工具,利用图④探索一种新的折叠方法,找出与图③中位置相同的P点,要求只有一条折痕,且点P在折痕上,请简要说明折叠方法.(不需说明理由)
    【分析】(1)依据△BCE是等腰直角三角形,即可得到CE=BC,由图②,可得CE=CD,而AD=BC,即可得到CD=AD,即=;
    (2)①由翻折可得,PH=PC,即PH2=PC2,依据勾股定理可得AH2+AP2=BP2+BC2,进而得出AP=BC,再根据PH=CP,∠A=∠B=90°,即可得到Rt△APH≌Rt△BCP(HL),进而得到∠CPH=90°;
    ②由AP=BC=AD,可得△ADP是等腰直角三角形,PD平分∠ADC,故沿着过D的直线翻折,使点A落在CD边上,此时折痕与AB的交点即为P;由∠BCE=∠PCH=45°,可得∠BCP=∠ECH,由∠DCE=∠PCH=45°,可得∠PCE=∠DCH,进而得到CP平分∠BCE,故沿着过点C的直线折叠,使点B落在CE上,此时,折痕与AB的交点即为P.
    【解答】解:(1)由图①,可得∠BCE=∠BCD=45°,
    又∵∠B=90°,
    ∴△BCE是等腰直角三角形,
    ∴=cs45°=,即CE=BC,
    由图②,可得CE=CD,而AD=BC,
    ∴CD=AD,
    ∴=;
    (2)①设AD=BC=a,则AB=CD=a,BE=a,
    ∴AE=(﹣1)a,
    如图③,连接EH,则∠CEH=∠CDH=90°,
    ∵∠BEC=45°,∠A=90°,
    ∴∠AEH=45°=∠AHE,
    ∴AH=AE=(﹣1)a,
    设AP=x,则BP=a﹣x,由翻折可得,PH=PC,即PH2=PC2,
    ∴AH2+AP2=BP2+BC2,
    即[(﹣1)a]2+x2=(a﹣x)2+a2,
    解得x=a,即AP=BC,
    又∵PH=CP,∠A=∠B=90°,
    ∴Rt△APH≌Rt△BCP(HL),
    ∴∠APH=∠BCP,
    又∵Rt△BCP中,∠BCP+∠BPC=90°,
    ∴∠APH+∠BPC=90°,
    ∴∠CPH=90°;
    ②折法:如图,由AP=BC=AD,可得△ADP是等腰直角三角形,PD平分∠ADC,
    故沿着过D的直线翻折,使点A落在CD边上,此时折痕与AB的交点即为P;
    折法:如图,由∠BCE=∠PCH=45°,可得∠BCP=∠ECH,
    由∠DCE=∠PCH=45°,可得∠PCE=∠DCH,
    又∵∠DCH=∠ECH,
    ∴∠BCP=∠PCE,即CP平分∠BCE,
    故沿着过点C的直线折叠,使点B落在CE上,此时,折痕与AB的交点即为P.
    【点评】本题属于折叠问题,主要考查了等腰直角三角形的性质,矩形的性质,全等三角形的判定与性质的综合运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.解题时常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.
    4. (2018·天津·10分)在平面直角坐标系中,四边形是矩形,点,点,点.以点为中心,顺时针旋转矩形,得到矩形,点,,的对应点分别为,,.
    (Ⅰ)如图①,当点落在边上时,求点的坐标;
    (Ⅱ)如图②,当点落在线段上时,与交于点.
    ①求证;
    ②求点的坐标.
    (Ⅲ)记为矩形对角线的交点,为的面积,求的取值范围(直接写出结果即可).
    【答案】(Ⅰ)点的坐标为.(Ⅱ)①证明见解析;②点的坐标为.(Ⅲ).
    【解析】分析:(Ⅰ)根据旋转的性质得AD=AO=5,设CD=x,在直角三角形ACD中运用勾股定理可CD的值,从而可确定D点坐标;
    (Ⅱ)①根据直角三角形全等的判定方法进行判定即可;
    ②由①知,再根据矩形的性质得.从而,故BH=AH,在Rt△ACH中,运用勾股定理可求得AH的值,进而求得答案;
    (Ⅲ).
    详解:(Ⅰ)∵点,点,
    ∴,.
    ∵四边形是矩形,
    ∴,,.
    ∵矩形是由矩形旋转得到的,
    ∴.
    在中,有,
    ∴ .
    ∴.
    ∴点的坐标为.
    (Ⅱ)①由四边形是矩形,得.
    又点在线段上,得.
    由(Ⅰ)知,,又,,
    ∴.
    ②由,得.
    又在矩形中,,
    ∴.∴.∴.
    设,则,.
    在中,有,
    ∴.解得.∴.
    ∴点的坐标为.
    (Ⅲ).
    点睛:本大题主要考查了等腰三角形的判定和性质,勾股定理以及旋转变换的性质等知识,灵活运用勾股定理求解是解决本题的关键.
    5. (2018·四川自贡·8分)如图,在△ABC中,BC=12,tanA=,∠B=30°;求AC和AB的长.
    【分析】如图作CH⊥AB于H.在Rt△求出CH、BH,这种Rt△ACH中求出AH、AC即可解决问题;
    【解答】解:如图作CH⊥AB于H.
    在Rt△BCH中,∵BC=12,∠B=30°,
    ∴CH=BC=6,BH==6,
    在Rt△ACH中,tanA==,
    ∴AH=8,
    ∴AC==10,
    ∴AB=AH+BH=8+6.
    【点评】本题考查解直角三角形,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
    6. (2018·四川自贡·10分)如图,在△ABC中,∠ACB=90°.
    (1)作出经过点B,圆心O在斜边AB上且与边AC相切于点E的⊙O(要求:用尺规作图,保留作图痕迹,不写作法和证明)
    (2)设(1)中所作的⊙O与边AB交于异于点B的另外一点D,若⊙O的直径为5,BC=4;求DE的长.(如果用尺规作图画不出图形,可画出草图完成(2)问)
    【分析】(1)作∠ABC的角平分线交AC于E,作EO⊥AC交AB于点O,以O为圆心,OB为半径画圆即可解决问题;
    (2)作OH⊥BC于H.首先求出OH、EC、BE,利用△BCE∽△BED,可得=,解决问题;
    【解答】解:(1)⊙O如图所示;
    (2)作OH⊥BC于H.
    ∵AC是⊙O的切线,
    ∴OE⊥AC,
    ∴∠C=∠CEO=∠OHC=90°,
    ∴四边形ECHO是矩形,
    ∴OE=CH=,BH=BC﹣CH=,
    在Rt△OBH中,OH==2,
    ∴EC=OH=2,BE==2,
    ∵∠EBC=∠EBD,∠BED=∠C=90°,
    ∴△BCE∽△BED,
    ∴=,
    ∴=,
    ∴DE=.
    【点评】本题考查作图﹣复杂作图,切线的判定和性质,相似三角形的判定和性质、勾股定理、角平分线的定义,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    7. (2018·台湾·分)嘉嘉参加机器人设计活动,需操控机器人在5×5的方格棋盘上从A点行走至B点,且每个小方格皆为正方形,主办单位规定了三条行走路径R1,R2,R3,其行经位置如图与表所示:
    已知A、B、C、D、E、F、G七点皆落在格线的交点上,且两点之间的路径皆为直线,在无法使用任何工具测量的条件下,请判断R1、R2、R3这三条路径中,最长与最短的路径分别为何?请写出你的答案,并完整说明理由.
    【分析】利用勾股定理分别计算出三条路径的长,比较大小即可得.
    【解答】解:第一条路径的长度为++=2+,
    第二条路径的长度为++1+=+++1,
    第三条路径的长度为+=2+,
    ∵2+<2+<+++1,
    ∴最长路径为A→E→D→F→B;最短路径为A→G→B.
    【点评】本题主要考查勾股定理的应用,解题的关键是根据勾股定理求得每条线段的长度.
    8.(2018·广东·9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.
    (1)证明:OD∥BC;
    (2)若tan∠ABC=2,证明:DA与⊙O相切;
    (3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.
    【分析】(1)连接OC,证△OAD≌△OCD得∠ADO=∠CDO,由AD=CD知DE⊥AC,再由AB为直径知BC⊥AC,从而得OD∥BC;
    (2)根据tan∠ABC=2可设BC=a、则AC=2a、AD=AB==,证OE为中位线知OE=a、AE=CE=AC=a,进一步求得DE==2a,再△AOD中利用勾股定理逆定理证∠OAD=90°即可得;
    (3)先证△AFD∽△BAD得DF•BD=AD2①,再证△AED∽△OAD得OD•DE=AD2②,由①②得DF•BD=OD•DE,即=,结合∠EDF=∠BDO知△EDF∽△BDO,据此可得=,结合(2)可得相关线段的长,代入计算可得.
    【解答】解:(1)连接OC,
    在△OAD和△OCD中,
    ∵,
    ∴△OAD≌△OCD(SSS),
    ∴∠ADO=∠CDO,
    又AD=CD,
    ∴DE⊥AC,
    ∵AB为⊙O的直径,
    ∴∠ACB=90°,
    ∴∠ACB=90°,即BC⊥AC,
    ∴OD∥BC;
    (2)∵tan∠ABC==2,
    ∴设BC=a、则AC=2a,
    ∴AD=AB==,
    ∵OE∥BC,且AO=BO,
    ∴OE=BC=a,AE=CE=AC=a,
    在△AED中,DE==2a,
    在△AOD中,AO2+AD2=()2+(a)2=a2,OD2=(OF+DF)2=(a+2a)2=a2,
    ∴AO2+AD2=OD2,
    ∴∠OAD=90°,
    则DA与⊙O相切;
    (3)连接AF,
    ∵AB是⊙O的直径,
    ∴∠AFD=∠BAD=90°,
    ∵∠ADF=∠BDA,
    ∴△AFD∽△BAD,
    ∴=,即DF•BD=AD2①,
    又∵∠AED=∠OAD=90°,∠ADE=∠ODA,
    ∴△AED∽△OAD,
    ∴=,即OD•DE=AD2②,
    由①②可得DF•BD=OD•DE,即=,
    又∵∠EDF=∠BDO,
    ∴△EDF∽△BDO,
    ∵BC=1,
    ∴AB=AD=、OD=、ED=2、BD=、OB=,
    ∴=,即=,
    解得:EF=.
    【点评】本题主要考查圆的综合问题,解题的关键是掌握等腰三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质及勾股定理逆定理等知识点.
    9.(2018·广东·9分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.
    (1)填空:∠OBC= 60 °;
    (2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;
    (3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?
    【分析】(1)只要证明△OBC是等边三角形即可;
    (2)求出△AOC的面积,利用三角形的面积公式计算即可;
    (3)分三种情形讨论求解即可解决问题:①当0<x≤时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.②当<x≤4时,M在BC上运动,N在OB上运动.
    ③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.
    【解答】解:(1)由旋转性质可知:OB=OC,∠BOC=60°,
    ∴△OBC是等边三角形,
    ∴∠OBC=60°.
    故答案为60.
    (2)如图1中,
    ∵OB=4,∠ABO=30°,
    ∴OA=OB=2,AB=OA=2,
    ∴S△AOC=•OA•AB=×2×2=2,
    ∵△BOC是等边三角形,
    ∴∠OBC=60°,∠ABC=∠ABO+∠OBC=90°,
    ∴AC==2,
    ∴OP===.
    (3)①当0<x≤时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.
    则NE=ON•sin60°=x,
    ∴S△OMN=•OM•NE=×1.5x×x,
    ∴y=x2.
    ∴x=时,y有最大值,最大值=.
    ②当<x≤4时,M在BC上运动,N在OB上运动.
    作MH⊥OB于H.则BM=8﹣1.5x,MH=BM•sin60°=(8﹣1.5x),
    ∴y=×ON×MH=﹣x2+2x.
    当x=时,y取最大值,y<,
    ③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.
    MN=12﹣2.5x,OG=AB=2,
    ∴y=•MN•OG=12﹣x,
    当x=4时,y有最大值,最大值=2,
    综上所述,y有最大值,最大值为.
    【点评】本题考查几何变换综合题、30度的直角三角形的性质、等边三角形的判定和性质、三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.
    10.(2018•广西桂林•10分)如图1,已知⊙O是ΔADB的外接圆,∠ADB的平分线DC交AB于点M,交⊙O于点C,连接AC,BC.
    (1)求证:AC=BC;
    (2)如图2,在图1 的基础上做⊙O的直径CF交AB于点E,连接AF,过点A作⊙O的切线AH,若AH//BC,求∠ACF的度数;
    (3)在(2)的条件下,若ΔABD的面积为,ΔABD与ΔABC的面积比为2:9,求CD的长.
    【答案】(1)证明见解析;(2)30°;(3)
    【解析】分析:(1)运用“在同圆或等圆中,弧相等,所对的弦相等”可求解;
    (2)连接AO并延长交BC于I交⊙O于J,由AH是⊙O的切线且AH∥BC得AI⊥BC,易证∠IAC=30°,故可得∠ABC=60°=∠F=∠ACB,由CF是直径可得∠ACF的度数;
    (3)过点D作DG⊥AB ,连接AO,知ABC为等边三角形,求出AB、AE的长,在RtΔAEO中,求出AO的长,得CF的长,再求DG 的长,运用勾股定理易求CD的长.
    详解:(1)∵DC平分∠ADB ∴∠ADC=∠BDC ∴AC=BC
    (2)连接AO并延长交BC于I交⊙O于J
    ∵AH是⊙O的切线且AH∥BC
    ∴AI⊥BC
    ∴BI=IC
    ∵AC=BC
    ∴IC=AC
    ∴∠IAC=30°
    ∴∠ABC=60°=∠F=∠ACB
    ∵FC是直径
    ∴∠FAC=90°
    ∴∠ACF=180°-90°-60°=30°
    (3)过点D作,连接AO
    由(1)(2)知ABC为等边三角形
    ∵∠ACF=30°

    ∴AE=BE

    ∴AB=

    在RtΔAEO中,设EO=x,则AO=2x


    ∴x=6,⊙O的半径为6
    ∴CF=12

    ∴DG=2
    过点D作,连接OD
    ∵,
    ∴CF//DG
    ∴四边形G’DGE为矩形

    在RtΔ中


    点睛:本题是一道圆的综合题.考查了圆的基本概念,垂径定理,勾股定理,圆周角定理等相关知识.比较复杂,熟记相关概念是解题关键.
    路径
    编号
    图例
    行径位置
    第一条路径
    R1
    _
    A→C→D→B
    第二条路径
    R2

    A→E→D→F→B
    第三条路径
    R3

    A→G→B

    相关试卷

    专题24直角三角形与勾股定理三年(2021-2023)中考数学真题分项汇编:

    这是一份专题24直角三角形与勾股定理三年(2021-2023)中考数学真题分项汇编,共80页。试卷主要包含了活动探究,如图1是第七届国际数学教育大会等内容,欢迎下载使用。

    专题31 几何综合压轴题- 2023年中考数学真题分类汇编(通用版含解析):

    这是一份专题31 几何综合压轴题- 2023年中考数学真题分类汇编(通用版含解析),文件包含专题31几何综合压轴问题共40题解析版docx、专题31几何综合压轴问题共40题原卷版docx等2份试卷配套教学资源,其中试卷共150页, 欢迎下载使用。

    专题27 概率- 2023年中考数学真题分类汇编(通用版含解析):

    这是一份专题27 概率- 2023年中考数学真题分类汇编(通用版含解析),文件包含专题27概率共50题解析版docx、专题27概率共50题原卷版docx等2份试卷配套教学资源,其中试卷共63页, 欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map