2024年中考数学计算能力考前训练提升11 求平均数、加权平均数
展开
这是一份2024年中考数学计算能力考前训练提升11 求平均数、加权平均数,文件包含2024年中考数学计算能力考前训练提升11求平均数加权平均数答案docx、2024年中考数学计算能力考前训练提升11求平均数加权平均数docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
11 求平均数、加权平均数
一、选择题
1.在2023年贵州某大学数学与统计学院的研究生入学考试中,三名考生甲、乙、丙在笔试、面试中的成绩(百分制)如下表所示,你觉得被录取的考生是( )
A.甲B.乙C.丙D.无法判断
2.在学校举办的合唱比赛中,八(3)班的演唱质量、精神风貌、配合默契得分分别为92分,80分,70分,若最终成绩由这三项得分依次按照 40%,30%,30%的百分比确定,则八(3)班的最终成绩是 ( )
A.80.6分B.81.8分C.84.7分D.96.8分
3.已知一组数据a1,a2,a3,a4,a5的平均数为5,则另一组数据a1+4,a2−1,a3+7,a4−5,a5+5的平均数为( )
A.4B.5C.6D.7
4.一组数据的方差计算公式为:s2=14[(6−x)2+(6−x)2+(7−x)2+(9−x)2],下列关于这组数据的说法错误的是( )
A.平均数是7B.中位数是6.5C.众数是6D.方差是1
5.我校某位初三学生为了在体育中考中获得好成绩,专门训练了中长跑项目,训练成绩记录如下表,则该学生的训练成绩的平均数和中位数分别为( )
A.9,8.5B.9,9C.8.5,8.5D.8.5,9
6.嘉嘉计算出数据x1,x2,x3,x4的平均数为3,则数据3x1+2,3x2+2,3x3+2,3x4+2的平均数是( )
A.3B.2C.5D.11
7.如果x1与x2的平均数是5,那x1−1与x2+5的平均数是( )
A.4B.5C.6D.7
8.某地连续10天的最低气温与天数之间的关系如图所示.这10天最低气温的平均值是( )
A.-5.7℃B.-5.5℃C.-3℃D.-6℃
9.在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x;去掉一个最低分,平均分为 y ;同时去掉一个最高分和一个最低分,平均分为z,则 ( )
A.y>z>xB.x>z>yC.y>x>zD.z>y>x
10.一枚质地均匀的正方体骰子(六个面分别标有数字1,2,3,4,5,6),投掷5次,分别记录每次骰子向上的一面出现的数字.根据下面的统计结果,能判断记录的这5个数字中一定没有出现数字6的是( )
A.中位数是3,众数是2B.平均数是3,中位数是2
C.平均数是3,方差是2D.平均数是3,众数是2
二、填空题
11.某中学八年级某个同学一个学期得平时作业成绩为90分,期中考试成绩为85分,期末考试成绩为88分,如果学校按2:3:5的比例计算总平均分,那么这个同学的总平均分为 分.
12.在一次数学测验中,甲班有a个人,平均分是m分,乙班有b个人,平均分是n分,则这两个班的总平均成绩为 分.
13.为了提高大家的环境保护意识,某小区在假期开展了废旧电池回收的志愿者活动,该小区有10名中学生参加了此项活动,他们回收的旧电池数量如下表:根据表中的数据,这10名中学生收集废旧电池的平均数为 节.
14.某校八年级学生某科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,评价成绩80分以上(含80分)为“优秀”.下面表中是小王同学的成绩记录:
若完成作业、单元检测、期末考试三项成绩按1:3:6的权重来确定期末评价成绩,小王的期末评价为优秀,那么他的期末考试最低成绩是 .
15.在从小到大排列的五个数x,3,6,8,12中再加入一个数,若这六个数的中位数、平均数与原来五个数的中位数、平均数分别相等,则x的值为 .
三、解答题
16.学校为了解本校学生对我国航天科技及空间站的知晓情况,在全校开展了“中国梦•航天情”系列活动,从知识竞赛,演讲比赛,制作宣传海报三个方面对全校学生进行考察,下面是张晓同学各项目的成绩,如果将知识竞赛,演讲比赛,制作宣传海报这三项得分依次按50%,30%,20%的比例计算学生的成绩,求张晓同学的最终成绩.
17.某校八年级学生在一次射击训练中,随机抽取10名学生的成绩如下表,请回答问题:
(1)填空:10名学生的射击成绩的众数是 ,中位数是 ,m= ;
(2)求这10名学生的平均成绩;
18.为了解某市生产相同零件的甲、乙两个工厂的工人生产能力情况,决定对其进行抽样调查.现从甲、乙两个工厂各随机抽取了10名工人某天每人加工零件的个数,并对数据进行整理、描述和分析,下面给出了部分信息.
信息一:甲工厂10名工人当天每人加工零件的个数为48,52,44,42,48,46,52,48,43,a.
信息二:乙工厂10名工人当天每人加工零件个数频数分布直方图如下图所示.
抽取的甲、乙两个工厂工人当天每人加工零件个数的平均数、众数、中位数情况如下表所示:
根据以上信息,解答下列问题:
(1)a= ,b= ,c= .
(2)若甲、乙两工厂的总人数相同,则估计当天 (填“甲工厂”或“乙工厂”)工人加工的零件个数更多,理由(只填一个): .
(3)若当天加工零件个数达到或超过50个,视为生产能手.若甲、乙两工厂各有1000名工人,试估计当天甲、乙两工厂生产能手的总人数之和.
19.为了了解秦兵马俑的身高状况,某考古队随机调查了36尊秦兵马俑,它们的高度(单位:cm)如下:
172,178,181,184,184,187,187,190,190,175,181,181,184,184,187,187,190,193,178,181,181,184,187,187,187,190,193,178,181,184,184,187,187,190,190,196.
(1)这36尊秦兵马俑高度的平均数、中位数和众数分别是多少?
(2)你能据此估计出秦兵马俑的平均高度吗?
20.某校为了了解本校学生对航天科技的关注程度,对八、九年级学生进行了航天科普知识竞赛(百分制),并从其中分别随机抽取了20名学生的测试成绩,整理、描述和分析如下:(成绩得分用x表示,共分成四组:A.80⩽x
相关试卷
这是一份备战中考数学《重难点解读•专项训练》专题12 两之间线段最短求最值(四大类型含将军饮马)(能力提升),文件包含专题12两之间线段最短求最值四大类型含将军饮马能力提升原卷版docx、专题12两之间线段最短求最值四大类型含将军饮马能力提升解析版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。
这是一份初中数学冀教版九年级上册23.1 平均数与加权平均数达标测试,共9页。试卷主要包含了5D.0,8分,5C.91D.90,67C.9,1,,2,等内容,欢迎下载使用。
这是一份冀教版九年级上册23.1 平均数与加权平均数同步训练题,共11页。试卷主要包含了5分C.89分D.88,4分C.92分D.90,85ax+1等内容,欢迎下载使用。