年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    中考强化训练河北省保定市中考数学模拟汇总 卷(Ⅲ)(含答案详解)

    中考强化训练河北省保定市中考数学模拟汇总 卷(Ⅲ)(含答案详解)第1页
    中考强化训练河北省保定市中考数学模拟汇总 卷(Ⅲ)(含答案详解)第2页
    中考强化训练河北省保定市中考数学模拟汇总 卷(Ⅲ)(含答案详解)第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考强化训练河北省保定市中考数学模拟汇总 卷(Ⅲ)(含答案详解)

    展开

    这是一份中考强化训练河北省保定市中考数学模拟汇总 卷(Ⅲ)(含答案详解),共25页。试卷主要包含了下列方程变形不正确的是,下列各式中,不是代数式的是,不等式的最小整数解是等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图是由一些完全相同的小立方块搭成的几何体从左面、上面看到的形状图.搭成这个几何体所用的小立方块的个数至少是( )
    A.3个B.4个C.5个D.6个
    2、如图所示,一座抛物线形的拱桥在正常水位时,水面AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )
    A.4米B.10米C.4米D.12米
    3、如图是一个运算程序,若x的值为,则运算结果为( )
    A.B.C.2D.4
    4、下列方程变形不正确的是( )
    A.变形得:
    B.方程变形得:
    C.变形得:
    D.变形得:
    5、北京冬奥会标志性场馆国家速滑馆“冰丝带”近12000平方米的冰面采用分模块控制技术,可根据不同项目分区域、分标准制冰.将12000用科学记数法表示为( )
    A.B.C.D.
    6、下列各式中,不是代数式的是( )
    A.5ab2B.2x+1=7C.0D.4a﹣b
    7、不等式的最小整数解是( )
    A.B.3C.4D.5
    8、如图,等腰三角形的底边长为,面积是,腰的垂直平分线分别交,边· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    于,点,若点为边的中点,点为线段上一动点,则周长的最小值为( )
    A.B.C.D.
    9、东东和爸爸一起出去运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,东东继续前行,5分钟后也原路返回,两人恰好同时到家.东东和爸爸在整个运动过程中离家的路程(米),(米)与运动时间(分)之间的函数关系如图所示,下列结论中错误的是( )
    A.两人前行过程中的速度为180米/分B.的值是15,的值是2700
    C.爸爸返回时的速度为90米/分D.运动18分钟或31分钟时,两人相距810米
    10、已知,则的补角等于( )
    A.B.C.D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,所有三角形都是直角三角形,所有四边形都是正方形,已知,,,,则_______.
    2、如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙),则拼成的长方形的周长是_________.
    3、在平行四边形ABCD中,对角线AC长为8cm,,,则它的面积为______cm2.
    4、某树主干长出x根枝干,每个枝干又长出x根小分支,若主干、枝干和小分支总数共133根,则主干长出枝干的根数x为______.
    5、长方形纸片按图中方式折叠,其中为折痕,如果折叠后在一条直线上,那么的大小是________度.
    三、解答题(5小题,每小题10分,共计50分)
    1、某商品每天可售出300件,每件获利2元.为了尽快减少库存,店主决定降价销售.根据经验可知,如果每件降价0.1元,平均每天可多售出20件,店主要想平均每天获利500元,每件商品应降价多少元?
    2、如图,ABCD,,,试说明:BCDE.请补充说明过程,并在括号内填上相应的理由.
    解:∵ABCD(已知),
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·

    又(已知),



    BCDE .
    3、已知关于的二次函数.
    (1)求证:不论为何实数,该二次函数的图象与轴总有两个公共点;
    (2)若,两点在该二次函数的图象上,直接写出与的大小关系;
    (3)若将抛物线沿轴翻折得到新抛物线,当时,新抛物线对应的函数有最小值3,求的值.
    4、如图,直线l:与y轴交于点G,直线l上有一动点P,过点P作y轴的平行线PE,过点G作x轴的平行线GE,它们相交于点E.将△PGE沿直线l翻折得到△PGE′,点E的对应点为E′.
    (1)如图1,请利用无刻度的直尺和圆规在图1中作出点E的对应点E′;
    (2)如图2,当点E的对应点E′落在x轴上时,求点P的坐标;
    (3)如图3,直线l上有A,B两点,坐标分别为(-2,-6),(4,6),当点P从点A运动到点B的过程中,点E′也随之运动,请直接写出点E′的运动路径长为____________.
    5、已知:在平面直角坐标系中,点O为坐标原点,和关于y轴对称,且,
    (1)如图1,求的度数;
    (2)如图2,点P为线段延长线上一点,交x轴于点D,设,点P的横坐标为d,求d与t之间的数量关系;
    (3)如图3,在(2)的条件下,点E为x轴上一点,连接交y轴于点F,且,,在的延长线上取一点Q,使,求点Q的横坐标.
    -参考答案-
    一、单选题
    1、C
    【分析】
    根据从左面看到的形状图,可得该几何体由2层,2行;从上面看到的形状图可得有2行,3列,从而得到上层至少1块,底层2行至少有3+1=4块,即可求解.
    【详解】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    解:根据从左面看到的形状图,可得该几何体由2层,2行;从上面看到的形状图可得有2行,3列,
    所以上层至少1块,底层2行至少有3+1=4块,
    所以搭成这个几何体所用的小立方块的个数至少是1+4=5块.
    故选:C
    【点睛】
    本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)从正面看:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)从左面看:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)从上面看:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键.
    2、B
    【分析】
    以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax²,由此可得A(﹣10,﹣4),B(10,﹣4),即可求函数解析式为y=﹣ x²,再将y=﹣1代入解析式,求出C、D点的横坐标即可求CD的长.
    【详解】
    解:以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,
    设抛物线的解析式为y=ax2,
    ∵O点到水面AB的距离为4米,
    ∴A、B点的纵坐标为﹣4,
    ∵水面AB宽为20米,
    ∴A(﹣10,﹣4),B(10,﹣4),
    将A代入y=ax2,
    ﹣4=100a,
    ∴a=﹣,
    ∴y=﹣x2,
    ∵水位上升3米就达到警戒水位CD,
    ∴C点的纵坐标为﹣1,
    ∴﹣1=﹣x2,
    ∴x=±5,
    ∴CD=10,
    故选:B.
    【点睛】
    本题考查二次函数在实际问题中的应用,找对位置建立坐标系再求解二次函数是关键.
    3、A
    【分析】
    根据运算程序,根据绝对值的性质计算即可得答案.
    【详解】
    ∵<3,
    ∴=,
    故选:A.
    【点睛】
    本题考查绝对值的性质及有理数的加减运算,熟练掌握绝对值的性质及运算法则是解题关键.
    4、D
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【分析】
    根据等式的性质解答.
    【详解】
    解:A. 变形得:,故该项不符合题意;
    B. 方程变形得:,故该项不符合题意;
    C. 变形得:,故该项不符合题意;
    D. 变形得:,故该项符合题意;
    故选:D.
    【点睛】
    此题考查了解方程的依据:等式的性质,熟记等式的性质是解题的关键.
    5、C
    【分析】
    科学记数法的形式是: ,其中<10,为整数.所以,取决于原数小数点的移动位数与移动方向,是小数点的移动位数,往左移动,为正整数,往右移动,为负整数.本题小数点往左移动到4的后面,所以
    【详解】
    解:12000
    故选C
    【点睛】
    本题考查的知识点是用科学记数法表示绝对值较大的数,关键是在理解科学记数法的基础上确定好的值,同时掌握小数点移动对一个数的影响.
    6、B
    【分析】
    根据代数式的定义即可判定.
    【详解】
    A. 5ab2是代数式;
    B. 2x+1=7是方程,故错误;
    C. 0是代数式;
    D. 4a﹣b是代数式;
    故选B.
    【点睛】
    此题主要考查代数式的判断,解题的关键是熟知:代数式的定义:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,叫做代数式.单独的一个数或一个字母也是代数式.
    7、C
    【分析】
    先求出不等式解集,即可求解.
    【详解】
    解:

    解得:
    所以不等式的最小整数解是4.
    故选:C.
    【点睛】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    本题考查了一元一次不等式的解法,正确解不等式,求出解集是解决本题的关键.
    8、C
    【分析】
    连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论.
    【详解】
    解:连接AD,
    ∵△ABC是等腰三角形,点D是BC边的中点,
    ∴AD⊥BC,
    ∴,解得AD=10,
    ∵EF是线段AC的垂直平分线,
    ∴点C关于直线EF的对称点为点A,
    ∴AD的长为CM+MD的最小值,
    ∴△CDM的周长最短=CM+MD+CD=AD+.
    故选:C.
    【点睛】
    本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.
    9、D
    【分析】
    两人同行过程中的速度就是20分钟前进3600千米的速度,即可判断A;东东在爸爸返回5分钟后返回即第20分钟返回,即可得到m=15,由此即可计算出n的值和爸爸返回的速度,即可判断B、C;分别求出运动18分钟和运动31分钟两人与家的距离即可得到答案.
    【详解】
    解:∵3600÷20=180米/分,
    ∴两人同行过程中的速度为180米/分,故A选项不符合题意;
    ∵东东在爸爸返回5分钟后返回即第20分钟返回
    ∴m=20-5=15,
    ∴n=180×15=2700,故B选项不符合题意;
    ∴爸爸返回的速度=2700÷(45-15)=90米/分,故C选项不符合题意;
    ∵当运动18分钟时,爸爸离家的距离=2700-90×(18-15)=2430米,东东离家的距离=180×18=3240米,
    ∴运动18分钟时两人相距3240-2430=810米;
    ∵返程过程中东东45-20=25分钟走了3600米,
    ∴东东返程速度=3600÷25=144米/分,
    ∴运动31分钟时东东离家的距离=3600-144×(31-20)=2016米,爸爸离家的距离=2700-90×(31-15)=1260米,
    ∴运动31分钟两人相距756米,故D选项符合题意;
    故选D.
    【点睛】
    本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.
    10、C
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【分析】
    补角的定义:如果两个角的和是一个平角,那么这两个角互为补角,据此求解即可.
    【详解】
    解:∵,
    ∴的补角等于,
    故选:C.
    【点睛】
    本题考查补角,熟知互为补角的两个角之和是180°是解答的关键.
    二、填空题
    1、46
    【解析】
    【分析】
    利用勾股定理分别求出AB2,AC2,继而再用勾股定理解题.
    【详解】
    解:由图可知,AB2=
    故答案为:46.
    【点睛】
    本题考查正方形的性质、勾股定理等知识,是基础考点,掌握相关知识是解题关键.
    2、4m+12##12+4m
    【解析】
    【分析】
    根据面积的和差,可得长方形的面积,根据长方形的面积公式,可得长方形的长,根据长方形的周长公式,可得答案.
    【详解】
    解:由面积的和差,得
    长方形的面积为(m+3)2-m2=(m+3+m)(m+3-m)=3(2m+3).
    由长方形的宽为3,可得长方形的长是(2m+3),
    长方形的周长是2[(2m+3)+3]=4m+12.
    故答案为:4m+12.
    【点睛】
    本题考查了平方差公式的几何背景,整式的加减,利用了面积的和差.熟练掌握运算法则是解本题的关键.
    3、20
    【解析】
    【分析】
    根据S▱ABCD=2S△ABC,所以求S△ABC可得解.作BE⊥AC于E,在直角三角形ABE中求BE从而计算S△ABC.
    【详解】
    解:如图,过B作BE⊥AC于E.
    在直角三角形ABE中,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∠BAC=30°,AB=5,
    ∴BE=AB=,
    S△ABC=AC•BE=10,
    ∴S▱ABCD=2S△ABC=20(cm2).
    故答案为:20.
    【点睛】
    本题综合考查了平行四边形的性质,含30度的直角三角形的性质等.先求出对角线分成的两个三角形中其中一个的面积,然后再求平行四边形的面积,这样问题就比较简单了.
    4、
    【解析】
    【分析】
    某树主干长出x根枝干,每个枝干又长出x根小分支,则小分支有根,可得主干、枝干和小分支总数为根,再列方程解方程,从而可得答案.
    【详解】
    解:某树主干长出x根枝干,每个枝干又长出x根小分支,则



    解得:
    经检验:不符合题意;取
    答:主干长出枝干的根数x为
    故答案为:
    【点睛】
    本题考查的是一元二次方程的应用,理解题意,用含的代数式表示主干、枝干和小分支总数是解本题的关键.
    5、90
    【解析】
    【分析】
    根据折叠的性质,∠1=∠2,∠3=∠4,利用平角,计算∠2+∠3的度数即可.
    【详解】
    如图,根据折叠的性质,∠1=∠2,∠3=∠4,
    ∵∠1+∠2+∠3+∠4=180°,
    ∴2∠2+2∠3=180°,
    ∴∠2+∠3=90°,
    ∴=90°,
    故答案为:90.
    【点睛】
    本题考查了折叠的性质,两个角的和,熟练掌握折叠的性质,灵活运用两个角的和是解题的关键.
    三、解答题
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    1、每件商品应降价1元.
    【分析】
    设每件商品应降价x元,得出降价后的销量及每件的盈利,然后可列出方程,解出即可.
    【详解】
    解:设每件商品应降价x元,则每天可售出300+20=300+200x件,
    由题意得:(2-x)(300+200x)=500,
    解得:x=(舍去)或x=1.
    每件商品应降价1元.
    【点睛】
    本题考查一元二次方程的应用,关键找到降价和卖的件数的关系,根据利润列方程求解.
    2、两直线平行,内错角相等;55;等量代换;已知;;同旁内角互补,两直线平行
    【分析】
    由题意根据平行线的性质与判定即可补充说理过程.
    【详解】
    解:(已知),
    (两直线平行,内错角相等),
    又(已知),
    (等量代换),
    (已知),

    (同旁内角互补,两直线平行).
    故答案为:两直线平行,内错角相等;55;等量代换;已知;;同旁内角互补,两直线平行.
    【点睛】
    本题考查平行线的判定与性质,解决本题的关键是掌握平行线的判定与性质.
    3、
    (1)见解析
    (2)
    (3)的值为1或-5
    【分析】
    (1)计算判别式的值,得到,即可判定;
    (2)计算二次函数的对称轴为:直线,利用当抛物线开口向上时,谁离对称轴远谁大判断即可;
    (3)先得到抛物线沿y轴翻折后的函数关系式,再利用对称轴与取值范围的位置分类讨论即可.
    (1)
    证明:令,则

    ∴不论为何实数,方程有两个不相等的实数根
    ∴无论为何实数,该二次函数的图象与轴总有两个公共点
    (2)
    解:二次函数的对称轴为:直线
    ∵,抛物线开口向上
    ∴抛物线上的点离对称轴越远对应的函数值越大
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·

    ∴M点到对称轴的距离为:1
    N点到对称轴的距离为:2

    (3)
    解:∵抛物线
    ∴沿轴翻折后的函数解析式为
    ∴该抛物线的对称轴为直线
    ①若,即,则当时,有最小值

    解得,


    ②若,即,则当时,有最小值-1
    不合题意,舍去
    ③若,,则当时,有最小值

    解得,


    综上,的值为1或-5
    【点睛】
    本题考查了抛物线与x轴的交点以及二次函数的最值问题,利用一元二次方程根的判别式判断抛物线与x轴的交点情况;熟练掌握二次函数的最值情况、根据对称轴与取值范围的位置关系来确定二次函数的最值是解本题的关键.
    4、
    (1)见解析
    (2)
    (3)6
    【分析】
    (1)作出过点E的l的垂线即可解决;
    (2)设直线l交x轴于点D,则由直线解析式可求得点D、点G的坐标,从而可得OD的长.由对称性及平行可得,设点P的坐标为(a,2a-2),则可得点E的坐标,由及勾股定理可求得点的坐标;
    (3)分别过点A、B作y轴的平行线,与过点G的垂直于y轴的直线分别交于点C、M,则点E在线段CM上运动,根据对称性知,点运动路径的长度等于CM的长,故只要求得CM的长即可,由A、B两点的坐标即可求得CM的长.
    (1)
    所作出点E的对应点E′如下图所示:
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (2)
    设直线l交x轴于点D
    在y=2x-2中,令y=0,得x=1;令x=0,得y=-2
    则点D、点G的坐标分别为(1,0)、(0,-2)
    ∴OD=1,OG=2
    由对称性的性质得:,
    ∵GE∥x轴




    设点P的坐标为(a,2a-2),其中a>0,则可得点E的坐标为(a,-2)
    ∴EG=a


    在Rt△中,由勾股定理得:
    解得:
    当时,
    所以点P的坐标为
    (3)
    分别过点A、B作y轴的平行线,与过点G的垂直于y轴的直线分别交于点C、M,则点E在线段CM上运动,根据对称性知,点运动路径的长度等于CM的长
    ∵A,B两点的坐标分别为(-2,-6),(4,6)
    ∴CM=4-(-2)=6
    则点运动路径的长为6
    故答案为:6
    【点睛】
    本题主要考查了一次函数的图象与性质、折叠的性质、尺规作图等知识,一次函数的性质及折叠的性质的应用是本题的关键.
    5、
    (1)22.5°;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (2)d=2t;
    (3)5
    【分析】
    (1)由轴对称,得到∠ABC=2,利用,得到∠A=3,根据∠A+=90°,求出的度数;
    (2)由轴对称关系求出AD=6t,根据,推出∠ADP=∠BAO,证得AP=DP,过点P作PH⊥AD于H,求出OH=AH-AO=2t,可得d与t之间的数量关系;
    (3)连接DQ,过P作PM⊥y轴于M,求出∠EAP=∠DPQ=,证明△EAP≌△QPD,推出∠PDQ=∠APE=,得到∠ODQ=90°,证明∠MPF=∠MFP=45°,结合,求出BF=,由,求出t=1,得到OA=1,OD=5,由此求出点Q的横坐标.
    (1)
    解:∵和关于y轴对称,
    ∴∠ABO=∠CBO,
    ∴∠ABC=2,
    ∵,
    ∴∠A=3,
    ∵∠A+=90°,
    ∴=22.5°;
    (2)
    解:∵和关于y轴对称,
    ∴∠BAO=∠BCO,
    ∵,
    ∴OD=5t,AD=6t,
    ∵,
    ∴∠ADP=∠BCO,
    ∴∠ADP=∠BAO,
    ∴AP=DP,
    过点P作PH⊥AD于H,则AH=DH=3t,
    ∴OH=AH-AO=2t,
    ∴d=2t;
    (3)
    解:∵=22.5°,∠ABC=2=45°,AB=BC,
    ∴∠BAC=∠ACB=∠ADP=,∠APD=45°,
    ∵,
    ∴∠APE=,∠AEP=45°,
    ∴∠EAP=∠DPQ=,
    ∵AP=DP,AE=PQ,
    ∴△EAP≌△QPD,
    ∴∠PDQ=∠APE=,
    ∴∠ODQ=90°,
    连接DQ,过P作PM⊥y轴于M,
    ∵∠AEP=45°,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴∠MPF=∠MFP=45°,
    ∴MF=MP,
    ∵,MP=2t,
    ∴,
    ∵∠APE=,∠PBF=∠ABO=,
    ∴∠PBF=∠APE,
    ∴BF=,
    ∵,
    ∴,
    得t=1,
    ∴OA=1,OD=5,
    ∴点Q的横坐标为5.
    【点睛】
    此题考查了三角形内角和定理的应用,轴对称的性质,等腰三角形的性质,平行线的性质,全等三角形的判定及性质,勾股定理,求点坐标,综合掌握各知识点并熟练应用解决问题是解题的关键.

    相关试卷

    中考强化训练贵州省兴仁市中考数学模拟汇总 卷(Ⅱ)(含答案详解):

    这是一份中考强化训练贵州省兴仁市中考数学模拟汇总 卷(Ⅱ)(含答案详解),共31页。试卷主要包含了和按如图所示的位置摆放,顶点B,下列各式中,不是代数式的是,下列语句中,不正确的是等内容,欢迎下载使用。

    中考强化训练湖南省邵阳市中考数学模拟汇总 卷(Ⅲ)(含答案详解):

    这是一份中考强化训练湖南省邵阳市中考数学模拟汇总 卷(Ⅲ)(含答案详解),共31页。试卷主要包含了一元二次方程的根为.等内容,欢迎下载使用。

    中考强化训练湖南省衡阳市中考数学模拟汇总 卷(Ⅲ)(含答案详解):

    这是一份中考强化训练湖南省衡阳市中考数学模拟汇总 卷(Ⅲ)(含答案详解),共29页。试卷主要包含了一元二次方程的根为.,利用如图①所示的长为a等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map