终身会员
搜索
    上传资料 赚现金
    2024海南省高三下学期学业水平诊断(四)数学含解析
    立即下载
    加入资料篮
    2024海南省高三下学期学业水平诊断(四)数学含解析01
    2024海南省高三下学期学业水平诊断(四)数学含解析02
    2024海南省高三下学期学业水平诊断(四)数学含解析03
    还剩8页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024海南省高三下学期学业水平诊断(四)数学含解析

    展开
    这是一份2024海南省高三下学期学业水平诊断(四)数学含解析,共11页。试卷主要包含了已知为等差数列,,,则,将椭圆,已知函数的图象在区间,已知实数,,满足,,,则等内容,欢迎下载使用。

    考生注意:
    1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答题卡上的指定位置.
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.
    3.考试结束后,将本试卷和答题卡一并交回.
    一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
    1.已知集合,,则( )
    A.B.C.D.
    2.复数的虚部为( )
    A.B.C.D.
    3.已知函数,则曲线在处的切线方程为( )
    A.B.C.D.
    4.我们平时登录各类网络平台的密码中的不同符号都各自对应一个字节数,若某个密码使用的符号对应的字节数分别为1,2,4,4,6,7,8,则这组数据的75%分位数为( )
    A.4B.5C.6D.7
    5.已知为等差数列,,,则( )
    A.32B.27C.22D.17
    6.将椭圆()上所有点的横坐标伸长为原来的()倍,纵坐标伸长为原来的()倍得到椭圆,设,的离心率分别为,,则下列说法正确的是( )
    A.若,则B.若,则
    C.若,则D.若,则
    7.已知正四棱台的上底面积为16,下底面积为64,且其各个顶点均在半径的球的表面上,则该四棱台的高为( )
    A.2B.8C.2或12D.4或8
    8.已知函数的图象在区间()内恰好有5对关于轴对称的点,则的值可以是( )
    A.4B.5C.6D.7
    二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.
    9.设,是两个平面,,是两条不同的直线,则下列命题为真命题的是( )
    A.若,,则B.若,,则
    C.若,,则D.若,,则
    10.已知实数,,满足,,,则( )
    A.B.
    C.D.当最小时,
    11.在平面四边形中,已知,且,,则( )
    A.的面积为
    B.的面积为2
    C.四边形为等腰梯形
    D.在方向上的投影向量为
    三、填空题:本题共3小题,每小题5分,共15分.
    12.近日海南文旅火爆出圈,海南岛优美的海滨景观和深厚的文化底蕴吸引着全国各地游客前往,小明计划假期去海口、三亚、儋州、文昌、琼海五个城市游玩,每个城市都去且只去一次,若儋州和文昌这两个城市不排在最前面和最后面,则不同的游玩顺序有________种.(用数字作答)
    13.已知函数在内恰有3个零点,则的取值范围是___________.
    14.已知为双曲线的右支上一点,点,分别在的两条渐近线上,为坐标原点,若四边形为平行四边形,且,则__________.
    四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.
    15.(13分)甲、乙两队进行排球比赛,规则是:每个回合由一方发球,另一方接球,每个回合的胜方得1分,负方不得分,且胜方为下一回合的发球方.无论之前得分情况如何,每个回合中发球方得分的概率均为,接球方得分的概率均为,且第一回合的发球方为甲队.
    (Ⅰ)求第二回合甲队得分的概率;
    (Ⅱ)设前三个回合中,甲队发球的次数为,求的分布列及数学期望.
    16.(15分)如图,在三棱锥中,和均为等腰直角三角形,,,为棱的中点,且.
    (Ⅰ)求证:平面平面;
    (Ⅱ)求二面角的正弦值.
    17.(15分)已知为等比数列,其前项和为,,.
    (Ⅰ)求的通项公式;
    (Ⅱ)记各项均为正数的数列的前项和为,若,证明:当时,.
    18.(17分)(Ⅰ)证明:当时,;
    (Ⅱ)若过点且斜率为()的直线与曲线交于,两点,为坐标原点,证明:.
    19.(17分)在直角坐标系中,动点到直线()的距离等于点到点的距离,动点在圆上,且的最小值为,设动点的轨迹为.
    (Ⅰ)求的方程;
    (Ⅱ)已知圆的切线与曲线交于,两点,求的最小值.
    海南省2023—2024学年高三学业水平诊断(四)
    数学·答案
    一、单项选择题:本题共8小题,每小题5分,共40分.
    1.答案:D
    命题意图:本题考查集合的表示与运算.
    解析:因为,,所以.
    2.答案:B
    命题意图:本题考查复数的概念和运算.
    解析:由,可知虚部为.
    3.答案:A
    命题意图:本题考查导数的几何意义.
    解析:因为,所以,则,,所以曲线在处的切线方程为,即.
    4.答案:D
    命题意图:本题考查百分位数的计算.
    解析:,故该组数据的75%分位数是从小到大第6个数据,为7.
    5.答案:C
    命题意图:本题考查等差数列的性质
    解析:由,,两式相减可得,所以,再由,可得,所以.
    6.答案:B
    命题意图:本题考查椭圆的几何性质.
    解析:由题意,椭圆的焦点在轴上,若,则从变换到的过程中,轴方向比轴方向上的伸长幅度更大,所以比更扁,即,所以B正确.若,当的焦点也在轴上时,,当的焦点在轴上时,和的大小不确定,所以A,C,D都不正确.
    7.答案:C
    命题意图:本题考查正四棱台的结构特征.
    解析:如图,连接,交于点,连接,交于点,连接,则由球的几何性质可知,正四棱台的外接球的球心必在直线上.由题意可得,,连接,,在中,,即,得.在中,,即,得.当球心在线段上时(如图),,当球心在线段的延长线上时(图略),.
    8.答案:C
    命题意图:本题考查分段函数的图象.
    解析:因为与的图象关于轴对称,所以问题转化为的图象与的图象在()内有5个不同的交点,结合图象可得的值可以是6.
    二、多项选择题:本题共3小题,每小题6分,共18分.每小题全部选对的得6分,部分选对的得部分分,有选错的得0分.
    9.答案:BD
    命题意图:本题考查空间位置关系的判断.
    解析:对于A,由于,,所以,故A错误;
    对于B,由于,,所以,故B正确;
    对于C,若,,则,可能平行、相交或异面,故C错误;
    对于D,若,,则,故D正确.
    10.答案:BCD
    命题意图:本题考查不等式的性质.
    解析:对于A,当,时,,故A错误;
    对于B,由得,故B正确;
    对于C,因为,所以,因为,所以等号不成立,故C正确;
    对于D,最小即数轴上到和的距离之和最小,当且仅当时最小,此时,故D正确.
    11.答案:ABD
    命题意图:本题考查平面向量与解三角形.
    解析:对于A,由,得,所以,所以,因为,所以,所以为等边三角形,所以,故A正确;
    对于B,设,由余弦定理,得,由,解得,所以,即,所以,故B正确;
    对于C,因为,,,所以与不平行,与不平行,故C错误;
    对于D,因为,,所以,又,所以,则由余弦定理知,所以,所以向量在方向上的投影向量为,故D正确.
    三、填空题:本题共3小题,每小题5分,共15分.
    12.答案:36
    命题意图:本题考查排列组合的应用.
    解析:先从海口、三亚、琼海这三个城市中任选两个安排在最前面和最后面,中间三个位置可以任意排列,所以不同的游完顺序有种.
    13.答案:
    命题意图:本题考查三角函数的性质.
    解析:当时,,因为在内恰有3个零点,所以结合正弦函数的性质可得,所以.
    14.答案:
    命题意图:本题考查双曲线与直线的位置关系.
    解析:设,易知双曲线的渐近线的方程为,由题意可知,.
    由得不妨取,
    同理可得,则,,于是,又,所以.
    四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.
    15.命题意图:本题考查相互独立事件的概率计算、随机变量的分布列和期望.
    解析:(Ⅰ)所求概率为.
    (Ⅱ)的所有可能取值为1,2,3,


    .
    故的分布列为
    的数学期望.
    16.命题意图:本题考查面面垂直的证明以及利用空间向量计算二面角.
    解析:(Ⅰ)设,如图,取的中点,连接,.
    因为为的中点,所以,且,又,所以,
    又为等腰直角三角形,,所以且,
    所以是二面角的平面角.
    易知,所以,所以,
    所以平面平面.
    (Ⅱ)由(Ⅰ)可知,,两两互相垂直,故以为原点,,,的方向为,,轴的正方向建立空间直角坐标系,如图.
    设,则,,,
    所以,.
    设为平面的法向量,
    则取.
    平面的一个法向量为.
    因为,
    所以二面角的正弦值为.
    17.命题意图:本题考查等比数列的性质及相关运算.
    解析:(Ⅰ)设的公比为,
    则,所以.
    又,所以,所以.
    (Ⅱ)因为,
    所以,,…,,,
    将上面各式累乘得.
    所以当时,.
    18.命题意图:本题考查利用导数与函数证明不等式.
    解析:(Ⅰ)设,则,
    当时,,单调递增,
    所以当时,,即.
    设,则,
    当时,,单调递减,
    所以当时,,即.
    综上可得:当时,.
    (Ⅱ)由题意可知直线的方程为,设,,
    不妨设,则.
    由(Ⅰ)知:当时,,
    所以,整理可得,即,所以.
    在中,用替换可得,所以,
    所以,即,所以.
    所以.
    19.命题意图:本题考查抛物线、圆与直线的综合问题.
    解析:(Ⅰ)设点的坐标为,由题意得,
    两边平方得,整理得,
    即的方程为.
    由题意知动点总在圆外,所以,所以.
    又因为,当时等号成立,
    所以,解得,
    所以的方程为.
    (Ⅱ)因为与有两个交点,所以不与轴平行,设,
    因为与圆相切,所以,所以.
    由消去可得,
    易知,设,,则,.
    所以,
    由(Ⅰ)知,所以,
    因为,,所以,即或.
    设,或.
    则,
    当时,,单调递增,所以.
    当时,,单调递减,所以.
    所以的最小值为,的最小值为.
    1
    2
    3
    相关试卷

    海南省2023-2024学年高三下学期学业水平诊断(四)数学试卷(Word版附解析): 这是一份海南省2023-2024学年高三下学期学业水平诊断(四)数学试卷(Word版附解析),共11页。试卷主要包含了已知为等差数列,,,则,将椭圆,已知函数的图象在区间,已知实数,,满足,,,则等内容,欢迎下载使用。

    海南省2023-2024学年高三学业水平诊断(四)数学试题(附解析版): 这是一份海南省2023-2024学年高三学业水平诊断(四)数学试题(附解析版),文件包含海南省2023-2024学年高三学业水平诊断四数学试题原卷版docx、海南省2023-2024学年高三学业水平诊断四数学试题原卷版pdf、海南省2023-2024学年高三学业水平诊断四数学试题解析版docx等3份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。

    海南省2023-2024学年高三学业水平诊断(四)数学试题(无答案): 这是一份海南省2023-2024学年高三学业水平诊断(四)数学试题(无答案),共4页。试卷主要包含了已知为等差数列,,则,已知实数满足,则等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2024海南省高三下学期学业水平诊断(四)数学含解析
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map