- 【期中复习】2023-2024学年人教A版2019高二数学下册考点清单 专题演练 专题01 导数的概念与运算.zip 试卷 0 次下载
- 【期中复习】2023-2024学年人教A版2019高二数学下册考点清单 专题演练 专题02 导数在研究函数中的应用.zip 试卷 0 次下载
- 【期中复习】2023-2024学年人教A版2019高二数学下册考点清单 专题演练 专题03 第六章 两个计数原理及排列组合.zip 试卷 0 次下载
- 【期中复习】2023-2024学年人教A版2019高二数学下册考点清单 专题演练 专题04 第六章 二项式定理.zip 试卷 0 次下载
- 【期中复习】2023-2024学年人教A版2019高二数学下册考点清单 专题演练 专题06 第七章 概率与数列,统计与导数交汇.zip 试卷 0 次下载
【期中复习】2023-2024学年人教A版2019高二数学下册考点清单 专题演练 专题05 第七章 随机变量及其分布列.zip
展开【考点题型一】条件概率
(1)一般地,设,为两个随机事件,且,我们称为在事件发生的条件下,事件发生的条件概率,简称条件概率.
【例1】(多选)(2024·山东烟台·一模)先后抛掷一枚质地均匀的骰子两次,记向上的点数分别为,设事件“为整数”,“为偶数”,“为奇数”,则( )
A.B.
【例2】(21-22高二下·陕西咸阳·阶段练习)袋中有5个球,其中红黄蓝白黑球各一个,甲乙两人按序从袋中有放回的随机摸取一球,记事件:甲和乙至少一人摸到红球,事件:甲和乙摸到的球颜色不同,则 .
【变式1-1】.(23-24高三上·河北·期末)第19届亚运会在杭州举行,为了弘扬“奉献,友爱,互助,进步”的志愿服务精神,5名大学生将前往3个场馆开展志愿服务工作.若要求每个场馆都要有志愿者,则当甲不去场馆时,场馆仅有2名志愿者的概率为( )
A.B.C.D.
【变式1-2】.(多选)(2024·江苏·模拟预测)设是一个随机试验中的两个事件,且,则( )
A.B.
C.D.
【考点题型二】条件概率性质应用
(1)由条件概率的定义,对任意两个事件与,若,则.我们称上式为概率的乘法公式.
(2)如果和是两个互斥事件,则;
【例1】(2019高三·全国·专题练习)已知1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球(白球与红球大小、形状、质地相同),现随机从1号箱中取出一球放入2号箱,再从2号箱中随机取出一球,则两次都取到红球的概率是( )
A.B.C.D.
【例2】(21-22高二上·安徽安庆·期末)已知,且若,,则 .
【例3】(22-23高二下·山西太原·阶段练习)条件概率只是缩小了样本空间,因此条件概率同样具有概率的性质.故试着证明条件概率的性质(1)和(2).设,则
(1);
(2)如果B和C是两个互斥事件,则;
【变式2-1】.(2023·云南昆明·模拟预测)已知事件A,B,C满足A,B是互斥事件,且,,,则的值等于( )
A.B.C.D.
【变式2-2】.(多选)(22-23高三下·重庆沙坪坝·阶段练习)一个盒子中装有个黑球和个白球(,均为不小于2的正整数),现从中先后无放回地取2个球.记“第一次取得黑球”为,“第一次取得白球”为,“第二次取得黑球”为,“第二次取得白球”为,则( )
A.B.
C.D.
【变式2-3】.(20-21高二·全国·课时练习)已知事件A和B是互斥事件,,,,则 .
【考点题型三】全概率公式及其应用
一般地,设,,是一组两两互斥的事件,,且,,则对任意的事件,有,我们称此公式为全概率公式.
【例1】(2024·河南信阳·二模)随着城市经济的发展,早高峰问题越发严重,上班族需要选择合理的出行方式.某公司员工小明的上班出行方式有三种,某天早上他选择自驾,坐公交车,骑共享单车的概率分别为,,,而他自驾,坐公交车,骑共享单车迟到的概率分别为,,,结果这一天他迟到了,在此条件下,他自驾去上班的概率是( )
A.B.C.D.
【例2】(21-22高二下·陕西咸阳·阶段练习)有甲、乙、丙三个工厂生产同一型号的产品,甲厂生产的次品率为,乙厂生产的次品率为,丙厂生产的次品率为,生产出来的产品混放在一起.已知甲、乙、丙三个工厂生产的产品数分别占总数的,从中任取一件产品,则取得的产品为次品的概率为 .
【例3】(23-24高三下·湖北荆州·阶段练习)现有10个球,其中5个球由甲工厂生产,3个球由乙工厂生产,2个球由丙工厂生产.这三个工厂生产该类产品的合格率依次是,,.现从这10个球中任取1个球,设事件为“取得的球是合格品”,事件分别表示“取得的球是甲、乙、丙三个工厂生产的”.
(1)求;
(2)若取出的球是合格品,求该球是甲工厂生产的概率.
【变式3-1】.(多选)(23-24高二下·江西·开学考试)某中药材盒中共有包装相同的10袋药材,其中甲级药材有4袋,乙级药材有6袋,从中不放回地依次抽取2袋,用A表示事件“第一次取到甲级药材”,用B表示事件“第二次取到乙级药材”,则( )
A.B.
C.D.事件A,B相互独立
【变式3-2】.(2024·北京怀柔·模拟预测)甲袋中有5个红球和3个白球,乙袋中有4个红球和2个白球,如果所有小球只存在颜色的差别,并且整个取球过程是盲取,分两步进行:第一步,先从甲袋中随机取出一球放入乙袋,分别用、表示由甲袋中取出红球、白球的事件;第二步,再从乙袋中随机取出两球,用B表示第二步由乙袋中取出的球是“两球都为红球”的事件,则事件B的概率是 .
【变式3-3】.(22-23高二下·新疆喀什·期末)甲箱中有个红球,个白球和个黑球,乙箱中有个红球,个白球和个黑球.先从甲箱中随机取出一个球放入乙箱中,再从乙箱中随机取出一球,则从乙箱中取出的是红球的概率为 .
【考点题型四】离散型随机变量分布列均值,方差
【例1】(2024·江西南昌·一模)甲公司现有资金200万元,考虑一项投资计划,假定影响投资收益的唯一因素是投资期间的经济形势,若投资期间经济形势好,投资有的收益率,若投资期间经济形势不好,投资有的损益率;如果不执行该投资计划,损失为1万元.现有两个方案,方案一:执行投资计划;方案二:聘请投资咨询公司乙分析投资期间的经济形势,聘请费用为5000元,若投资咨询公司乙预测投资期间经济形势好,则执行投资计划;若投资咨询公司乙预测投资期间经济形势不好,则不执行该计划.根据以往的资料表明,投资咨询公司乙预测不一定正确,投资期间经济形势好,咨询公司乙预测经济形势好的概率是0.8;投资期间经济形势不好,咨询公司乙预测经济形势不好的概率是0.7.假设根据权威资料可以确定,投资期间经济形势好的概率是,经济形势不好的概率是.
(1)求投资咨询公司乙预测投资期间经济形势好的概率;
(2)根据获得利润的期望值的大小,甲公司应该执行哪个方案?说明理由.
【例2】(2024·云南昆明·模拟预测)新高考数学试卷增加了多项选择题,每小题有A、B、C、D四个选项,原则上至少有2个正确选项,至多有3个正确选项.题目要求:“在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.”
其中“部分选对的得部分分”是指:若正确答案有2个选项,则只选1个选项且正确得3分;若正确答案有3个选项,则只选1个选项且正确得2分,只选2个选项且都正确得4分.
(1)若某道多选题的正确答案是AB,一考生在解答该题时,完全没有思路,随机选择至少一个选项,至多三个选项,请写出该生所有选择结果所构成的样本空间,并求该考生得分的概率;
(2)若某道多选题的正确答案是2个选项或是3个选项的概率均等,一考生只能判断出A选项是正确的,其他选项均不能判断正误,给出以下方案,请你以得分的数学期望作为判断依据,帮该考生选出恰当方案:
方案一:只选择A选项;
方案二:选择A选项的同时,再随机选择一个选项;
方案三:选择A选项的同时,再随机选择两个选项.
【例3】(2018高二·全国·竞赛)现有甲、乙、丙三人参加某电视台的应聘节目《非你莫属》,若甲应聘成功的概率为,乙、丙应聘成功的概率均为,且三个人是否应聘成功是相互独立的.
(1)若乙、丙有且只有一个人应聘成功的概率等于甲应聘成功的概率,求的值;
(2)记应聘成功的人数为,若当且仅当为2时概率最大,求的取值范围.
【变式4-1】.(2022·全国·模拟预测)“国家反诈中心”APP集合报案助手、举报线索、风险查询、诈骗预警、骗局曝光、身份核实等多种功能于一体,是名副其实的“反诈战舰”.2021年该APP于各大官方应用平台正式上线,某地组织全体村民下载注册,并组织了一场线下反电信诈骗问卷测试,随机抽取其中100份问卷,统计测试得分(满分100分),将数据按照,,…,,分成5组,得到如图所示的频率分布直方图.
(1)求a的值及这100份问卷的平均分(同一组数据用该组数据区间的中点值代替);
(2)若界定问卷得分低于70分的村民“防范意识差”,不低于90分的村民“防范意识强”.现从样本的“防范意识差”和“防范意识强”村民中采用分层抽样的方法抽取7人开座谈会,再从这7人中随机抽取3人,记抽取的3人中“防范意识强”的人数为X,求X的分布列和数学期望.
【变式4-2】.(2024·广东·模拟预测)某公司是一家集无人机特种装备的研发、制造与技术服务的综合型科技创新企业.该公司生产的甲、乙两种类型无人运输机性能都比较出色,但操控水平需要十分娴熟,才能发挥更大的作用.已知在单位时间内,甲、乙两种类型无人运输机操作成功的概率分别为和,假设每次操作能否成功相互独立.
(1)随机选择两种无人运输机中的一种,求选中的无人运输机操作成功的概率;
(2)操作员连续进行两次无人机的操作有两种方案:
方案一:在初次操作时,随机选择两种无人运输机中的一种,若初次操作成功,则第二次继续使用该类型设备;若初次操作不成功,则第二次使用另一类型进行操作;
方案二:在初次操作时,随机选择两种无人运输机中的一种,无论初次操作是否成功,第二次均使用初次所选择的无人运输机进行操作.
假定方案选择及操作不相互影响,试比较这两种方案的操作成功的次数的期望值.
【变式4-3】.(2016高二·全国·竞赛)“蛟龙号”从海底中带回的某种生物,甲乙两个生物小组分别独立开展对该生物离开恒温箱的成活情况进行研究,每次试验一个生物,甲组能使生物成活的概率为,乙组能使生物成活的概率为,假定试验后生物成活,则称该试验成功,如果生物不成活,则称该次试验是失败的.
(1)甲小组做了三次试验,求至少两次试验成功的概率;
(2)如果乙小组成功了4次才停止试验,求乙小组第四次成功前共有三次失败,且恰有两次连续失败的概率;
(3)若甲乙两小组各进行2次试验,设试验成功的总次数为,求的分布列及数学期望.
【考点题型五】均值和方差的性质
①若与都是随机变量,且,则由与之间分布列的关系可知.
②若与相互独立,则.
③若与都是随机变量,且,则由与之间分布列的关系可知.
【例1】(22-23高二下·内蒙古赤峰·阶段练习)随机变量的分布列如下,则 .
【例2】(2023高三上·全国·专题练习)已知随机变量的分布列为
则 ; .
【例3】(22-23高二上·全国·课时练习)设随机变量满足为非零常数),若,则 , .
【变式5-1】.(22-23高二下·辽宁鞍山·阶段练习)已知随机变量X,Y满足,且随机变量X的分布列如下:
则随机变量Y的方差等于 ;
【变式5-2】.(22-23高二下·江苏·课时练习)已知随机变量X的概率分布为
若,且,则 .
【变式5-3】.(21-22高二·全国·课时练习)设离散型随机变量的期望为,则 .
【考点题型六】独立重复试验与二项分布模型
【例1】(23-24高三上·全国·开学考试)一次抛掷两颗质地均匀的正方体骰子,若出现的点数和是3的倍数,则这次抛掷得分为3,否则得分为.抛掷n次,记累计得分为,若,则 .
【例2】(2024·江苏·模拟预测)某学校有甲,乙两个餐厅,经统计发现,前一天选择餐厅甲就餐第二天仍选择餐厅甲就餐的概率为,第二天选择餐厅乙就餐的概率为;前一天选择餐厅乙就餐第二天仍选择餐厅乙就餐的概率为,第二天选择餐厅甲就餐的概率为.若学生第一天选择餐厅甲就餐的概率是,选择餐厅乙就餐的概率是,记某同学第天选择餐厅甲就餐的概率为.
(1)记某班3位同学第二天选择餐厅甲的人数为,求随机变量的分布列及期望;
(2)学校为缓解就餐压力,决定每天从各年级抽调21人到甲乙两个餐厅参加志愿服务,请求出的通项公式,根据以上数据合理分配甲,乙两个餐厅志愿者人数,并说明理由.
【例3】(23-24高三下·重庆·阶段练习)甲、乙两选手进行象棋比赛,设各局比赛的结果相互独立,每局比赛甲获胜的概率为,乙获胜的概率为.
(1)若采用5局3胜制比采用3局2胜制对甲更有利,求的取值范围;
(2)若,已知甲乙进行了局比赛且甲胜了13局,试给出的估计值(表示局比赛中甲胜的局数,以使得最大的的值作为的估计值).
【变式6-1】.(23-24高二上·江西南昌·期末)在一个布袋中装有除颜色外完全相同的3个白球和m个黑球,从中随机摸取1个球,有放回地摸取3次,记摸取白球的个数为X.若,则 .
【变式6-2】.(2024·甘肃兰州·一模)2024年高三数学适应性考试中选择题有单选和多选两种题型组成.单选题每题四个选项,有且仅有一个选项正确,选对得5分,选错得0分,多选题每题四个选项,有两个或三个选项正确,全部选对得6分,部分选对得3分,有错误选择或不选择得0分.
(1)已知某同学对其中4道单选题完全没有答题思路,只能随机选择一个选项作答,且每题的解答相互独立,记该同学在这4道单选题中答对的题数为随机变量X.
(i)求;
(ii)求使得取最大值时的整数;
(2)若该同学在解答最后一道多选题时,除确定B,D选项不能同时选择之外没有答题思路,只能随机选择若干选项作答.已知此题正确答案是两选项与三选项的概率均为,求该同学在答题过程中使得分期望最大的答题方式,并写出得分的最大期望.
【变式6-3】.(2024·江西赣州·一模)某人准备应聘甲、乙两家公司的高级工程师,两家公司应聘程序都是:应聘者先进行三项专业技能测试,专业技能测试通过后进入面试.已知该应聘者应聘甲公司,每项专业技能测试通过的概率均为,该应聘者应聘乙公司,三项专业技能测试通过的概率依次为,,m,其中,技能测试是否通过相互独立.
(1)若.求该应聘者应聘乙公司三项专业技能测试恰好通过两项的概率;
(2)已知甲、乙两家公司的招聘在同一时间进行,该应聘者只能应聘其中一家,应聘者以专业技能测试通过项目数的数学期望为决策依据,若该应聘者更有可能通过乙公司的技能测试,求m的取值范围.
【考点题型七】超几何分布模型
【例1】(2024·安徽合肥·一模)2023年9月26日,第十四届中国(合肥)国际园林博览会在合肥骆岗公园开幕.本届园博会以“生态优先,百姓园博”为主题,共设有5个省内展园、26个省外展园和7个国际展园,开园面积近3.23平方公里.游客可通过乘坐观光车、骑自行车和步行三种方式游园.
(1)若游客甲计划在5个省内展园和7个国际展园中随机选择2个展园游玩,记甲参观省内展园的数量为,求的分布列及数学期望;
(2)为更好地服务游客,主办方随机调查了500名首次游园且只选择一种游园方式的游客,其选择的游园方式和游园结果的统计数据如下表:
用频率估计概率.若游客乙首次游园,选择上述三种游园方式的一种,求游园结束时乙能参观完所有展园的概率.
【例2】(2022·全国·模拟预测)很多新手拿到驾驶证后开车上路,如果不遵守交通规则,将会面临扣分的处罚,为让广大新手了解驾驶证扣分新规定,某市交警部门结合机动车驾驶人有违法行为一次记12分、6分、3分、2分的新规定设置了一份试卷(满分100分),发放给新手解答,从中随机抽取了12名新手的成绩,成绩以茎叶图表示如图所示,并规定成绩低于95分的为不合格,需要加强学习,成绩不低于95分的为合格.
(1)将频率视为概率,根据样本估计总体的思想,若从该市新手中任选4人,求至多1人不合格的概率;
(2)若从这12名新手中任选3人,用表示成绩合格的人数,求的分布列与数学期望.
【例3】(23-24高二上·江西南昌·期末)“英才计划”最早开始于2013年,由中国科协、教育部共同组织实施,到2023年已经培养了6000多名具有创新潜质的优秀中学生,为选拔培养对象,某高校在暑假期间从中学里挑选优秀学生参加数学、物理、化学学科夏令营活动.
(1)若数学组的7名学员中恰有3人来自中学,从这7名学员中选取3人,表示选取的人中来自中学的人数,求的分布列和数学期望:
(2)在夏令营开幕式的晚会上,物理组举行了一次学科知识竞答活动,规则如下:两人一组,每一轮竞答中,每人分别答两题,若小组答对题数不小于3,则取得本轮胜利.已知甲、乙两位同学组成一组,甲、乙答对每道题的概率分别为,且,假设每轮答题结果互不影响,如果甲、乙两位同学想在此次答题活动中取得6轮胜利,那么理论上至少要参加多少轮竞赛?
【变式7-1】.(23-24高三上·安徽亳州·期末)小张参加某公司的招聘考试,题目按照难度不同分为A类题和B类题,小张需要通过“抽小球”的方式决定要答的题目难度类型:一个箱子里装有质地、大小一样的5个球,3个标有字母A,另外2个标有字母B,小张从中任取3个小球,若取出的A球比B球多,则答A类题,否则答B类题.
(1)设小张抽到A球的个数为X,求X的分布列及.
(2)已知A类题里有4道论述题和1道计算题,B类题里有3道论述题和2道计算题,小张确定题目的难度类型后需要从相应题目中任选一道题回答.
(i)求小张回答论述题的概率;
(ii)若已知小张回答的是论述题,求小张回答的是A类题的概率.
【变式7-2】.(23-24高三上·浙江绍兴·期末)临近新年,某水果店购入A,B,C三种水果,数量分别是36箱,27箱,18箱.现采用分层抽样的方法抽取9箱,进行质量检查.
(1)应从A,B,C三种水果各抽多少箱?
(2)若抽出的9箱水果中,有5箱质量上乘,4箱质量一般,现从这9箱水果中随机抽出4箱送有关部门检测.
①用X表示抽取的4箱中质量一般的箱数,求随机变量X的分布列和数学期望;
②设A为事件“抽取的4箱水果中,既有质量上乘的,也有质量一般的水果”,求事件A发生的概率.
【变式7-3】.(21-22高三上·广东广州·期末)某地区共有200个村庄,根据扶贫政策的标准,划分为贫困村与非贫困村.为了分析2018年度该地区的(国内生产总值)(单位:万元)情况,利用分层抽样的方法,从中抽取一个容量为20的样本,并绘成如图所示的茎叶图.
(1)(i)分别求样本中非贫困村与贫困村的的平均值;
(ii)利用样本平均值来估算该地区2018年度的的总值.
(2)若从样本中的贫困村中随机抽取4个村进行调研,设表示被调研的村中低于(i)中贫困村平均值的村的个数,求的分布列及数学期望.
【考点题型八】正态分布模型
【例1】(2022高三·全国·专题练习)为准备2022年北京一张家口冬奥会,某冰上项目组织计划招收一批9~14岁的青少年参加集训,以选拔运动员,共有10000名运动员报名参加测试,其测试成绩(满分100分)服从正态分布,成绩为90分及以上者可以进入集训队,已知80分及以上的人数为228人,请你通过以上信息,推断进入集训队的人数为 .附:,,.
【例2】(23-24高二上·江西·期末)已知随机变量,若,则 .
【例3】(23-24高三下·山东·开学考试)某小区在2024年的元旦举办了联欢会,现场来了1000位居民.联欢会临近结束时,物业公司从现场随机抽取了20位幸运居民进入摸奖环节,这20位幸运居民的年龄用随机变量X表示,且.
(1)请你估计现场年龄不低于60岁的人数(四舍五入取整数);
(2)奖品分为一等奖和二等奖,已知每个人摸到一等奖的概率为40%,摸到二等奖的概率为60%,每个人摸奖相互独立,设恰好有个人摸到一等奖的概率为,求当取得最大值时的值.
附:若,则.
【例4】(2021·广东·模拟预测)2020年国庆节期间,我国高速公路继续执行“节假日高速公路免费政策”.某路桥公司为掌握国庆节期间车辆出行的高峰情况,在某高速公路收费站点记录了3日上午9:20~10:40这一时间段内通过的车辆数,统计发现这一时间段内共有600辆车通过该收费站点,它们通过该收费站点的时刻的频率分布直方图如下图所示,其中时间段9:20~9:40记作、9:40~10:00记作,10:00~10:20记作,10:20~10:40记作,例如:10点04分,记作时刻64.
(1)估计这600辆车在9:20~10:40时间内通过该收费站点的时刻的平均值(同一组中的数据用该组区间的中点值代表);
(2)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆车随机抽取4辆,设抽到的4辆车中,在9:20~10:00之间通过的车辆数为X,求X的分布列;
(3)根据大数据分析,车辆在每天通过该收费站点的时刻T服从正态分布,其中可用3日数据中的600辆车在9:20~10:40之间通过该收费站点的时刻的平均值近似代替,用样本的方差近似代替(同一组中的数据用该组区间的中点值代表).假如4日全天共有1000辆车通过该收费站点,估计在9:46~10:40之间通过的车辆数(结果保留到整数).
附:若随机变量T服从正态分布,则,,.
【变式8-1】.(2024·辽宁·一模)小明所在的公司上午9:00上班,小明上班通常选择自驾、公交或地铁这三种方式.若小明选择自驾,则从家里到达公司所用的时间(单位:分钟)服从正态分布若小明选择地铁,则从家里到达公司所用的时间(单位:分钟)服从正态分布;若小明选择公交,则从家里到达公司所用的时间(单位:分钟)服从正态分布.若小明上午8:12从家里出发,则选择 上班迟到的可能性最小.(填“自驾”“公交”或“地铁”)
参考数据:若则,,
【变式8-2】.(23-24高三上·安徽亳州·期末)已知随机变量,若,则的取值范围是 .
【变式8-3】.(23-24高三下·广东·阶段练习)第五代移动通信技术(5th Generatin Mbile Cmmunicatin Technlgy,简称5G)是具有高速率、低时延和大连接特点的新一代宽带移动通信技术,5G通讯设施是实现人机物互联的网络基础设施。2023年5月17日,中国电信、中国移动、中国联通、中国广电宣布正式启动全球首个5G异网漫游试商用.此前,中国移动、中国联通和中国电信三大运营商分别公布了其5G套餐价格.下面是中国移动公布的5G套餐价格:
中国移动公司某营业厅随机统计了100名近4个月使用5G套餐客户实际月使用流量情况,并绘制了如图所示的频率分布直方图.(假设每位客户每月使用流量一样,同一组中的数据用该组区间的中点值作代表).
(1)求这100名5G套餐客户月使用流量的平均值;
(2)由频率分布直方图可以认为,中国移动5G套餐客户月使用流量近似服从正态分布,其中近似为样本平均数,近似为样本方差,经计算得,若从中国移动所有5G套餐客户中随机抽取1000人,记为这1000人中月使用流量小于95GB的人数,求的数学期望;
(3)针对5G套餐客户,中国移动根据客户订购的套餐,将客户分为以下四种:
假设月使用流量在GB的客户有一半人订购30GB套餐流量,另一半人订购60GB套餐流量,月使用流量在GB的客户都订购100GB套餐流量,月使用流量在GB的客户都订购150GB套餐流量,月使用流量在GB的客户都订购300GB套餐流量.
中国移动根据以上统计的100名客户情况,准备今年年底针对这些客户举办返利活动,有以下两种方案:
方案一:按分层抽样在银卡客户、金卡客户、钻石卡客户中共抽取24人,对这些客户免收一个月套餐费(超出套餐流量的部分也免费,客户不改变自己已经订购的套餐且每月使用流量不变);
方案二:通过参与摸球游戏直接反现金给客户,规则如下:每次游戏客户从一个装有1个红球、3个白球(球的大小、形状一样)的不透明箱子中,有放回的摸3次球,每次摸一个球;若摸到红球的次数为1,则可得50元现金,若摸到红球的次数为2,则可得100元现金,摸到红球的次数为3,则可得150元现金,若没有摸到红球,则不返现;每位普卡客户可参与1次游戏,每位银卡客户可参与2次游戏,每位金卡客户可参与3次游戏,每位钻石卡客户可参与4次游戏(每次摸球的结果相互独立).
试问,中国移动应选择哪种方案,投资更少?
附:若随机变量服从正态分布,则,,.
【变式8-4】.(23-24高三下·山东济宁·开学考试)2021年是中国共产党建党100周年,为引导和带动青少年重温中国共产党的百年光辉历程,某市组织全市中学生参加中国共产党百年历史知识竞赛,现从中随机抽取了100名学生的成绩组成样本,并将得分分成以下6组:,统计结果如图所示.
(1)试估计这100名学生得分的中位数(保留小数点后两位有效数字);
(2)从样本中得分不低于70分的学生中,按比例用分层随机抽样的方法选取11人进行座谈,若从座谈名单中随机抽取3人,记其得分在的人数为,试求的分布列和均值;
(3)用样本估计总体,根据频率分布直方图,可以认为参加知识竞赛的学生的得分近似地服从正态分布,其中近似为样本平均数,近似为样本方差,经计算.现从所有参加知识竞赛的学生中随机抽取2000人,若这2000名学生的得分相互独立,试问得分高于90分的人数最有可能是多少?
参考数据:若随机变量,则,.
0
1
2
P
X
1
2
3
4
5
P
0.1
0.3
0.4
0.1
0.1
X
0
1
2
P
X
-2
-1
0
1
2
P
m
游园方式
游园结果
观光车
自行车
步行
参观完所有展园
80
80
40
未参观完所有展园
20
120
160
月费(元人民币)
128
198
298
398
598
流量(GB)
30
60
100
150
300
语音通话(分钟)
200
500
800
1200
3000
备注
超出套餐流量5元/GB,满15元后按照3元/GB计费
订购套餐流量(GB)
30
60
100
150
300
对应客户名称
普卡客户
银卡客户
金卡客户
钻石卡客户
【期中复习】2023-2024学年人教A版2019高二数学下册考点清单 专题演练 专题06 第七章 概率与数列,统计与导数交汇.zip: 这是一份【期中复习】2023-2024学年人教A版2019高二数学下册考点清单 专题演练 专题06 第七章 概率与数列,统计与导数交汇.zip,文件包含期中复习2023-2024学年人教A版2019高二数学下册知识点归纳+专题演练-专题06第七章概率与数列统计与导数交汇原卷版docx、期中复习2023-2024学年人教A版2019高二数学下册知识点归纳+专题演练-专题06第七章概率与数列统计与导数交汇解析版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。
【期中复习】2023-2024学年人教A版2019高二数学下册考点清单 专题演练 专题04 第六章 二项式定理.zip: 这是一份【期中复习】2023-2024学年人教A版2019高二数学下册考点清单 专题演练 专题04 第六章 二项式定理.zip,文件包含期中复习2023-2024学年人教A版2019高二数学下册知识点归纳+专题演练-专题04第六章二项式定理原卷版docx、期中复习2023-2024学年人教A版2019高二数学下册知识点归纳+专题演练-专题04第六章二项式定理解析版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。
【期中复习】2023-2024学年人教A版2019高二数学下册考点清单 专题演练 专题03 第六章 两个计数原理及排列组合.zip: 这是一份【期中复习】2023-2024学年人教A版2019高二数学下册考点清单 专题演练 专题03 第六章 两个计数原理及排列组合.zip,文件包含期中复习2023-2024学年人教A版2019高二数学下册知识点归纳+专题演练-专题03第六章两个计数原理及排列组合原卷版docx、期中复习2023-2024学年人教A版2019高二数学下册知识点归纳+专题演练-专题03第六章两个计数原理及排列组合解析版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。