【期中讲练测】北师大版七年级下册数学 专题02 相交线与平行线(压轴专练).zip
展开一.余角和补角(共2小题)
1.将一副学生用三角板(一个锐角为30°的直角三角形,一个锐角为45°的直角三角形)如图叠放,则下列4个结论中正确的个数有( )
①OE平分∠AOD;
②∠AOC=∠EOD;
③∠AOC﹣∠CEA=15°;
④∠COB+∠AOD=180°.
A.0B.1C.2D.3
2.如图1,某校七年级数学学习小组在课后综合实践活动中,把一个直角三角尺AOB的直角顶点O放在互相垂直的两条直线PQ、MN的垂足O处,并使两条直角边落在直线PQ、MN上,将△AOB绕着点O顺时针旋转α(0°<α<180°).
(1)如图2,若α=26°,则∠BOP= ,∠AOM+∠BOQ= ;
(2)若射线OC是∠BOM的角平分线,且∠POC=β.
①若△AOB旋转到图3的位置,∠BON的度数为多少?(用含β的代数式表示)
②△AOB在旋转过程中,若∠AOC=2∠AOM,求此时β的值.
二.平行线的判定(共1小题)
3.一副直角三角板中,∠A=60°,∠D=30°,∠E=∠B=45°,现将直角顶点C按照如图方式叠放,点E在直线AC上方,且0°<∠ACE<180°,能使三角形ADC有一条边与EB平行的所有∠ACE的度数为 .
三.平行线的性质(共27小题)
4.如图,AB∥CD,E为AB上一点,且EF⊥CD垂足为F,∠CED=90°,CE平分∠AEG,且∠CGE=α,则下列结论:①;②DE平分∠GEB;③∠CEF=∠GED;④∠FED+∠BEC=180°;其中正确有( )
A.①②B.②③④C.①②③④D.①③④
5.如图,AB∥EF,设∠C=90°,那么x、y和z的关系是( )
A.y=x+zB.x+y﹣z=90°
C.x+y+z=180°D.y+z﹣x=90°
6.如图,已知AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD.若∠ABO=α°,给出下列结论:①;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正确的有( )
A.1个B.2个C.3个D.4个
7.如图a是长方形纸带,∠DEF=28°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是( )
A.94°B.96°C.102°D.128°
8.如图,AB∥CD,F为AB上一点,FD∥EH,且FE平分∠AFG,过点F作FG⊥EH于点G,且∠AFG=2∠D,则下列结论:
①∠D=40°;
②2∠D+∠EHC=90°;
③FD平分∠HFB;
④FH平分∠GFD.
其中正确结论的个数是( )
A.1个B.2个C.3个D.4个
9.如图,AD∥BC,∠D=∠ABC,点E是边DC上一点,连接AE交BC的延长线于点H.点F是边AB上一点.使得∠FBE=∠FEB,作∠FEH的角平分线EG交BH于点G,若∠DEH=100°,则∠BEG的度数为( )
A.30°B.40°C.50°D.60°
10.如图,已知AB∥CD,CE,BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为 E3,…第n次操作,分别作∠ABEn﹣1和∠DCEn﹣1的平分线,交点为En.若∠En=1°,那∠BEC等于 °.
11.如图,将长方形纸片ABCD沿EF折叠后,点A,B分别落在A',B'的位置,再沿AD边将∠A'折叠到∠H处,已知∠1=50°,则∠FEH= °.
12.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若∠EFG=49°,则∠2﹣∠1= .
13.综合与探究
问题情境
在综合实践课上,老师组织七年级(2)班的同学开展了探究两角之间数量关系的数学活动,如图,已知射线AM∥BN,连接AB,点P是射线AM上的一个动点(与点A不重合),BC,BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.
探索发现
“快乐小组”经过探索后发现:
(1)当∠A=60°时,∠CBD=∠A.请说明理由.
(2)不断改变∠A的度数,∠CBD与∠A却始终存在某种数量关系,用含∠A的式子表示∠CBD为 .
操作探究
(3)“智慧小组”利用量角器量出∠APB和∠ADB的度数后,探究二者之间的数量关系.他们惊奇地发现,当点P在射线AM上运动时,无论点P在AM上的什么位置,∠APB与∠ADB之间的数量关系都保持不变,请写出它们的关系,并说明理由.
(4)点P继续在射线AM上运动,当运动到使∠ACB=∠ABD时,请直接写出2∠ABC+∠A的结果.
14.小明同学在完成七年级上册数学的学习后,遇到了一些问题,请你帮他解决一下.
(1)如图1,已知AB∥CD,则∠AEC=∠BAE+∠DCE成立吗?请说明理由;
(2)如图2,已知AB∥CD,BE平分∠ABC,DE平分∠ADC.BE、DE所在直线交于点E,若∠FAD=60°,∠ABC=40°,求∠BED的度数.
15.综合与探究,问题情境:综合实践课上,王老师组织同学们开展了探究三角之间数量关系的数学活动.
(1)如图1,EF∥MN,点A,B分别为直线EF,MN上的一点,点P为平行线间一点且∠PAF=130°,∠PBN=120°,求∠APB度数;
问题迁移
(2)如图2,射线OM与射线ON交于点O,直线m∥n,直线m分别交OM,ON于点A,D,直线n分别交OM,ON于点B,C,点P在射线OM上运动.
①当点P在A,B(不与A,B重合)两点之间运动时,设∠ADP=∠α,∠BCP=∠β.则∠CPD,∠α,∠β之间有何数量关系?请说明理由;
②若点P不在线段AB上运动时(点P与点A,B,O三点都不重合),请你直接写出∠CPD,∠α,∠β间的数量关系.
16.(1)【问题解决】如图1,已知AB∥CD,∠BEP=36°,∠CFP=152°,求∠EPF的度数;
(2)【问题迁移】如图2,若AB∥CD,点P在AB的上方,则∠PFC,∠PEA,∠EPF之间有何数量关系?并说明理由;
(3)【联想拓展】如图3,在(2)的条件下,已知∠EPF=α,∠PEA的平分线和∠PFC的平分线交于点G,求∠G的度数(结果用含α的式子表示).
17.已知直线AM∥BN,点P是直线AM上的一个动点(不与点A重合),BC平分∠PBN,交直线AM于点C.
(1)如图1,当点P在点A左侧时,若∠CPB=40°,请直接写出∠PCB的度数,不必说明理由;
(2)若∠MAB=60°,BD平分∠PBA,交直线AM于点D.
①如图2,若点P在点A左侧运动时,∠DBC的度数是否会发生变化?若不变,求出该度数;若变化,请说明理由;
②∠ADB与∠ABC之间存在怎样的数量关系?请写出结论,并说明理由.
18.如图,MN∥OP,点A为直线MN上一定点,B为直线OP上的动点,在直线MN与OP之间且在线段AB的右方作点D,使得AD⊥BD.设∠DAB=α(α为锐角).
(1)求∠NAD与∠PBD的和;(提示过点D作EF∥MN)
(2)当点B在直线OP上运动时,试说明∠OBD﹣∠NAD=90°;
(3)当点B在直线OP上运动的过程中,若AD平分∠NAB,AB也恰好平分∠OBD,请求出此时α的值
19.如图,AD∥BC,∠BAD的平分线交BC于点G,∠BCD=90°.
(1)试说明:∠BAG=∠BGA;
(2)如图1,点F在AG的反向延长线上,连接CF交AD于点E,若∠BAG﹣∠F=45°,求证:CF平分∠BCD.
(3)如图2,线段AG上有点P,满足∠ABP=3∠PBG,过点C作CH∥AG.若在直线AG上取一点M,使∠PBM=∠DCH,求的值.
20.已知:如图,直线PQ∥MN,点C是PQ,MN之间(不在直线PQ,MN上)的一个动点.
(1)若∠1与∠2都是锐角,如图1,请直接写出∠C与∠1,∠2之间的数量关系.
(2)若小明把一块三角板(∠A=30°,∠C=90°)如图2放置,点D,E,F是三角板的边与平行线的交点,若∠AEN=∠A,求∠BDF的度数.
(3)将图2中的三角板进行适当转动,如图3,直角顶点C始终在两条平行线之间,点G在线段CD上,连接EG,且有∠CEG=∠CEM,给出下列两个结论:
①的值不变;
②∠GEN﹣∠BDF的值不变.
其中只有一个是正确的,你认为哪个是正确的?并求出不变的值是多少.
21.如图1,AD∥BC,DE平分∠ADB,∠BDC=∠BCD.
(1)求证:∠DEC+∠ECD=90°;
(2)如图2,BF平分∠ABD交CD的延长线于点F,若∠ABC=100°,求∠F的大小;
(3)如图3,若H是BC上一动点,K是BA延长线上一点,KH交BD于点M,交AD于点O,KG平分∠BKH,交DE于点N,交BC于点G,当点H在线段BC上运动时(不与点B重合),求的值.
22.如图1,AM∥NC,点B位于AM,CN之间,∠BAM为钝角,AB⊥BC,垂足为点B.
(1)若∠C=40°,则∠BAM= ;
(2)如图2,过点B作BD⊥AM,交MA的延长线于点D,求证:∠ABD=∠C;
(3)如图3,在(2)问的条件下,BE平分∠DBC交AM于点E,若∠C=∠DEB,求∠DEB的度数.
23.如图,直线AC∥BD,连接AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角)
(1)当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD;
(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(直接回答成立或不成立)
(3)当动点P落在第③部分时,全面探究∠PAC,∠APB,∠PBD之间的关系,并写出动点P的具体位置和相应的结论.
24.如图,AB∥CD,定点E,F分别在直线AB,CD上,在平行线AB,CD之间有一动点P,且满足0°<∠EPF<180°,QE,QF分别平分∠PEB和∠PFD.
在探究∠EPF与∠EQF之间的数量关系时,我们需要对点P的位置进行分类讨论:
(1)如图1,当P点在EF的右侧时,若∠EPF=110°,则∠EQF= ;
猜想∠EPF与∠EQF的数量关系,请直接写出结果;
(2)如图2,当P点在EF的左侧时,探究∠EPF与∠EQF的数量关系,请说明理由;
(3)若∠BEQ与∠DFQ的角平分线交于点Q1,∠BEQ1与∠DFQ1的角平分线交于点Q2,∠BEQ2与∠DFQ2的角平分线交于点Q3;…以此类推,则∠EPF与∠EQnF满足怎样的数量关系?(直接写出结果)
25.如图1所示:点E为BC上一点,∠A=∠D,AB∥CD.
(1)直接写出∠ACB与∠BED的数量关系;
(2)如图2,AB∥CD,BG平分∠ABE,BG的反向延长线与∠EDF的平分线交于H点,若∠DEB比∠GHD大60°,求∠DEB的度数;
(3)保持(2)中所求的∠DEB的度数不变,如图3,BM平分∠EBK,DN平分∠CDE,作BP∥DN,求∠PBM的度数.(本题中的角均为大于0°且小于180°的角)
26.如图,AD∥BC,∠BAD的平分线交BC于点G,∠BCD=90°.
(1)求证:∠BAG=∠BGA;
(2)如图②,线段AG上有一点P,满足∠ABP=3∠PBG,过点C作CH∥AG.若在直线AG上有一点M,使∠PBM=∠DCH,求的值.
27.已知AB∥CD,P是截线MN上的一点,MN与CD、AB分别交于E、F.
(1)若∠EFB=50°,∠EDP=35°,求∠MPD的度数;
(2)如图1,当点P在线段EF上运动时,∠CDP与∠ABP的平分线交于Q,问:是否为定值?若是定值,请求出定值;若不是,说明其范围;
(3)①如图2,当点P在线段FE的延长线上运动时,∠CDP与∠ABP的平分线交于Q,则的值为 ;
②当点P在直线EF上运动时,∠CDP与∠ABP的n等分线交于Q,其中∠CDQ=∠CDP,∠ABQ=∠ABP,设∠DPB=α,求∠Q的度数(直接用含n,α的代数式表示,不需说明理由).
28.“一带一路”让中国和世界更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是每秒2度,灯B转动的速度是每秒1度.假定主道路是平行的,即PQ∥MN,且∠BAM:∠BAN=2:1.
(1)填空:∠BAN= °;
(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?
(3)如图2,若两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作∠ACD交PQ于点D,且∠ACD=120°,则在转动过程中,请探究∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.
29.如图1,MN∥EF,C为两直线之间一点.
(1)如图1,若∠MAC与∠EBC的平分线相交于点D,若∠ACB=100°,求∠ADB的度数.
(2)如图2,若∠CAM与∠CBE的平分线相交于点D,∠ACB与∠ADB有何数量关系?并证明你的结论.
(3)如图3,若∠CAM的平分线与∠CBF的平分线所在的直线相交于点D,请直接写出∠ACB与∠ADB之间的数量关系: .
30.如图,已知直线AB∥射线CD,∠CEB=100°.P是射线EB上一动点,过点P作PQ∥EC交射线CD于点Q,连接CP.作∠PCF=∠PCQ,交直线AB于点F,CG平分∠ECF.
(1)若点P,F,G都在点E的右侧.
①求∠PCG的度数;
②若∠EGC﹣∠ECG=40°,求∠CPQ的度数.
(2)在点P的运动过程中,是否存在这样的情形,使?若存在,求出∠CPQ的度数;若不存在,请说明理由.
【期中讲练测】苏科版八年级下册数学 06期中必刷题(压轴专练).zip: 这是一份【期中讲练测】苏科版八年级下册数学 06期中必刷题(压轴专练).zip,文件包含期中讲练测苏科版八年级下册数学06期中必刷题压轴专练解析版docx、期中讲练测苏科版八年级下册数学06期中必刷题压轴专练原题版docx等2份试卷配套教学资源,其中试卷共143页, 欢迎下载使用。
【期中讲练测】北师大版七年级下册数学 专题04 三角形(压轴专练).zip: 这是一份【期中讲练测】北师大版七年级下册数学 专题04 三角形(压轴专练).zip,文件包含期中讲练测北师大版七年级下册数学专题04三角形压轴专练原卷版docx、期中讲练测北师大版七年级下册数学专题04三角形压轴专练解析版docx等2份试卷配套教学资源,其中试卷共61页, 欢迎下载使用。
【期中讲练测】北师大版七年级下册数学 专题03 变量之间的关系(压轴专练).zip: 这是一份【期中讲练测】北师大版七年级下册数学 专题03 变量之间的关系(压轴专练).zip,文件包含期中讲练测北师大版七年级下册数学专题03变量之间的关系压轴专练原卷版docx、期中讲练测北师大版七年级下册数学专题03变量之间的关系压轴专练解析版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。