【期中讲练测】苏科版八年级下册数学 考点串讲 专题02 中心对称图形-平行四边形
展开旋转的定义:在平面内,一个图形绕一个定点沿某个方向(顺时针或逆时针)转过一个角度,这样的图形运动叫旋转.这个定点叫做旋转中心,转过的这个角叫做旋转角.三大要素:旋转中心、旋转方向和旋转角度.性质:1)对应点到旋转中心的距离相等;2)每对对应点与旋转中心所连线段的夹角等于旋转角;3)旋转前后的图形全等.作图步骤:1)根据题意,确定旋转中心、旋转方向及旋转角;2)找出原图形的关键点;3)连接关键点与旋转中心,按旋转方向与旋转角将它们旋转,得到各关键点的对应点;4)按原图形依次连接对应点,得到旋转后的图形.
1. 图形的旋转由旋转中心、旋转方向与旋转的角度所决定.2. 旋转中心可以是图形外的一点,也可以是图形上的一点,还可以是图形内的一点.3. 对应点之间的运动轨迹是一段圆弧,对应点到旋转中心的线段就是这段圆弧所在圆的半径.4. 旋转是一种全等变换,旋转改变的是图形的位置,图形的大小关系不发生改变,所以在解答有关旋转的问题时,要注意挖掘相等线段、角,因此特殊三角形性质的运用、锐角三角函数建立的边角关系起着关键的作用.
1.(22-23九年级上·广东韶关·期末)下列现象:①地下水位逐年下降,②传送带的移动,③方向盘的转动,④水龙头的转动;其中属于旋转的有( )A.4个B.3个C.2个D.1个
2.(22-23八年级上·山东济宁·期末)下列图形均可由“基本图案”通过变换得到:(只填序号) 既可以由“基本图案”平移,也可以通过旋转得到的有( )个.A.1B.2C.3D.4
6.(22-23八年级下·广东佛山·期中)有一种平面图形,它绕着中心旋转,不论旋转多少度,所得到的图形与原图形完全重合,你觉得它可能是( )A.三角形B.等边三角形C.正方形D.圆
中心对称的性质:1)中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;中心对称的两个图形是全等图形.作与已知图形成中心对称的图形的一般步骤:1)作已知图形各顶点(或决定图形形状的关键点)关于对称中心的对称点——连接关键点和对称中心,并延长一倍确定关键点的对称点.2)把各对称点按已知图形的连接方式依次连接起来,则所得到的图形就是已知图形关于对称中心对称的图形.找对称中心的方法和步骤:方法1:连接两个对应点,取对应点连线的中点,则中点为对称中心.方法2:连接两个对应点,在连接两个对应点,两组对应点连线的交点为对称中心.
1.(2022·山西·模拟预测)中国航天取得了举世瞩目的成就,为人类和平贡献了中国智慧和中国力量,下列是有关中国航天的图标,其文字上方的图案是中心对称图形的是( )
平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.平行四边形的表示:用符号“▱”表示,平行四边形ABCD记作“▱ABCD”,读作“平行四边形ABCD”.平行四边形的性质:1)对边平行且相等; 2)对角相等、邻角互补; 3)对角线互相平分;4)平行四边形是中心对称图形,但不是轴对称图形,平行四边形的对角线的交点是平行四边形的对称中心.
1)平行四边形相邻两边之和等于周长的一半.2)平行四边形中有相等的边、角和平行关系,所以经常需结合三角形全等来解题.3)过平行四边形对称中心的任一直线等分平行四边形的面积及周长.4)如图①,AE平分∠BAD,则可利用平行线的性质结合等角对等边得到△ABE为等腰三角形,即AB=BE.5)如图②,已知点E为AD上一点,根据平行线间的距离处处相等,可得S△BEC=S△ABE+S△CDE.6)如图③,根据平行四边形的面积的求法,可得AE·BC=AF·CD.
平行四边形的判定定理:①定义:两组对边分别平行的四边形是平行四边形.②一组对边平行且相等的四边形是平行四边形.③两组对边分别相等的四边形是平行四边形.④两组对角分别相等的四边形是平行四边形.⑤对角线互相平分的四边形是平行四边形.
一般地,要判定一个四边形是平行四边形有多种方法,主要有以下三种思路:1)当已知条件中有关于所证四边形的角时,可用“两组对角分别相等的四边形是平行四边形”来证明;2)当已知条件中有关于所证四边形的边时,可选择“两组对边分别相等的四边形是平行四边形”或“两组对边分别平行的四边形是平行四边形”或“有一组对边平行且相等的四边形是平行四边形”来证明;3)当已知条件中有关于所证四边形的对角线时,可选择“对角线互相平分的四边形是平行四边形”来证明.
菱形的定义:有一组邻边相等的平行四边形叫做菱形.菱形的性质:1)具有平行四边形的所有性质;2)四条边都相等;3)两条对角线互相垂直,且每条对角线平分一组对角.4)菱形既是中心对称图形,又是轴对称图形,菱形的对称中心是菱形对角线的交点,菱形的对称轴是菱形对角线所在的直线,菱形的对称轴过菱形的对称中心.菱形的判定:1)对角线互相垂直的平行四边形是菱形.2)一组邻边相等的平行四边形是菱形.3)四条边相等的四边形是菱形.【解题思路】判定一个四边形是菱形时,可先说明它是平行四边形,再说明它的一组邻边相等或它的对角线互相垂直,也可直接说明它的四条边都相等或它的对角线互相垂直平分.菱形的面积公式:S=ah=对角线乘积的一半(其中a为边长,h为高).菱形的周长公式:周长l=4a(其中a为边长).
矩形的定义:有一个角是直角的平行四边形叫做矩形.矩形的性质:1)矩形具有平行四边形的所有性质;2)矩形的四个角都是直角;3)对角线互相平分且相等;4)矩形既是中心对称图形,也是轴对称图形.矩形的对称中心是矩形对角线的交点;矩形有两条对称轴,矩形的对称轴是过矩形对边中点的直线;矩形的对称轴过矩形的对称中心.【推论】1)在直角三角形中斜边的中线,等于斜边的一半.2)直角三角形中,30度角所对应的直角边等于斜边的一半. 矩形的判定:1) 有一个角是直角的平行四边形是矩形; 2)对角线相等的平行四边形是矩形;3)有三个角是直角的四边形是矩形.【解题思路】要证明一个四边形是矩形,首先要判断四边形是否为平行四边形,若是,则需要再证明对角线相等或有一个角是直角;若不易判断,则可通过证明有三个角是直角来直接证明.
正方形的定义:四条边都相等,四个角都是直角的四边形叫做正方形. 正方形的性质:1)正方形具有平行四边形、矩形、菱形的所有性质.2)正方形的四个角都是直角,四条边都相等.3)正方形对边平行且相等.4)正方形的对角线互相垂直平分且相等,每条对角线平分一组对角; 5)正方形的两条对角线把正方形分成四个全等的等腰直角三角形; 6)正方形既是中心对称图形,也是轴对称图形.【补充】正方形对角线与边的夹角为45°.正方形的判定:1)平行四边形+一组邻边相等+一个角为直角;2)矩形+一组邻边相等;3)矩形+对角线互相垂直;4)菱形+一个角是直角;5)菱形+对角线相等.
判定一个四边形是正方形通常先证明它是矩形,再证明它有一组邻边相等或对角线互相垂直;或者先证明它是菱形,再证明它有一个角是直角或对角线相等;还可以先判定四边形是平行四边形,再证明它有一个角为直角和一组邻边相等.
1.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3的度数为( )A.90°B.105°C.120°D.135°
3.如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH,若BE:EC=2:1,则线段CH的长是( )A.3B.4C.5D.6
4.在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的条件是( )A.AC=BD,AB∥CD,AB=CDB.AD∥BC,∠A=∠CC.AO=BO=CO=DO,AC⊥BDD.AO=CO,BO=DO,AB=BC
【期中讲练测】苏科版八年级下册数学 考点串讲 专题03 分式: 这是一份【期中讲练测】苏科版八年级下册数学 考点串讲 专题03 分式,共31页。PPT课件主要包含了解题技巧,易错易混,知识大全,思维导图,热考题型,考点一分式的运算,考点一分式的基础,考点二解分式方程等内容,欢迎下载使用。
【期中讲练测】苏科版八年级下册数学 考点串讲 专题01 数据的收集、整理、描述与认识概率: 这是一份【期中讲练测】苏科版八年级下册数学 考点串讲 专题01 数据的收集、整理、描述与认识概率,共30页。PPT课件主要包含了解题技巧,易错易混,知识大全,思维导图,热考题型,考点二认识概率等内容,欢迎下载使用。
【期中讲练测】人教版八年级下册数学 串讲02+勾股定理(考点串讲): 这是一份【期中讲练测】人教版八年级下册数学 串讲02+勾股定理(考点串讲),共47页。PPT课件主要包含了技巧总结,易错易混,典例剖析,考点透视,考场练兵等内容,欢迎下载使用。