所属成套资源:新高考版2023年高考数学必刷压轴题专题(附解析)
新高考版2023年高考数学必刷压轴题专题19立体几何与空间向量解答题压轴题(学生版)
展开
这是一份新高考版2023年高考数学必刷压轴题专题19立体几何与空间向量解答题压轴题(学生版),共24页。
1.(2022·黑龙江·勃利县高级中学高二阶段练习)如图,在四棱锥中,是边长为2的正三角形,,,,,,,分别是线段,的中点.
(1)求证:平面平面;
(2)求直线与平面所成角的正弦值.
2.(2022·江苏苏州·高一期末)如图,在直四棱柱中,底面是边长为的菱形,,,,分别是线段,上的动点,且.
(1)若二面角为,求的长;
(2)当三棱锥的体积为时,求与平面所成角的正弦值的取值范围.
3.(2022·全国·高一单元测试)如图,在四棱锥中,底面为直角梯形,,,,.
(1)为上一点,且,当平面时,求实数的值;
(2)当平面与平面所成的锐二面角的大小为时,求与平面所成角的正弦值.
4.(2022·吉林·长春外国语学校高一期末)如图,直四棱柱的底面是边长为的菱形,且.
(1)证明:平面平面;
(2)若平面平面,求与平面所成角的正弦值.
5.(2022·福建省永泰县第一中学高二开学考试)四棱锥,底面ABCD是平行四边形,,且平面SCD平面ABCD,点E在棱SC上,直线平面BDE.
(1)求证:E为棱SC的中点;
(2)设二面角的大小为,且.求直线BE与平面ABCD所成的角的正切值.
6.(2022·山东烟台·高一期末)如图,在三棱柱中,侧面ABCD为矩形.
(1)设M为AD中点,点N在线段PC上且,求证:平面BDN;
(2)若二面角的大小为,,且,求直线BD和平面QCB所成角的正弦值的取值范围.
7.(2022·吉林·长春吉大附中实验学校高一期末)如图,在四棱锥中,为正三角形,底面为直角梯形,,,,,点在线段上,且.
(1)探究在线段上是否存在点,使得平面,若存在,试证明你的结论;若不存在,请说明理由.
(2)设二面角的大小为,若,求直线与平面所成角的正弦值.
8.(2022·黑龙江·铁人中学高一期末)在三棱台中, , , 侧面 平面
(1)求证: 平面;
(2)求证: 是直角三角形;
(3)求直线与平面所成角的正弦值.
9.(2022·江西·新余市第一中学高二开学考试)如图,已知四棱锥,底面是矩形,,点是棱上一劫点(不含端点).
(1)求证:平面平面;
(2)当且时,若直线与平面所成的线面角,求点的运动轨迹的长度.
10.(2022·全国·高三专题练习)如图所示,几何体中,均为正三角形,四边形为正方形,平面,,M,N分别为线段与线段的中点.
(1)求证:平面;
(2)求直线与平面所成角的正弦值.
11.(2022·全国·高三专题练习(理))如图,在四棱锥中,四边形ABCD是菱形,,,三棱锥是正三棱锥,E,F分别为,的中点.
(1)求证:直线平面SAC;
(2)求二面角的余弦值;
(3)判断直线SA与平面BDF的位置关系.如果平行,求出直线SA与平面BDF的距离;如果不平行,说明理由.
12.(2022·全国·高三专题练习)如图,在四棱锥中,底面为直角梯形,,,,,E为的中点,且.
(1)求证:平面;
(2)记的中点为N,若M在线段上,且直线与平面所成角的正弦值为,求线段的长.
②二面角问题
1.(2022·浙江·慈溪中学高三开学考试)如图,在四棱锥中,平面平面,是的平分线,且.
(1)若点为棱的中点,证明:平面;
(2)已知二面角的大小为,求平面和平面的夹角的余弦值.
2.(2022·山西大附中高三阶段练习)如图,在四棱锥中,四边形是矩形,是正三角形,且平面平面,,为棱的中点,四棱锥的体积为.
(1)若为棱的中点,求证:平面;
(2)在棱上是否存在点,使得平面与平面所成锐二面角的余弦值为?若存在,指出点的位置并给以证明;若不存在,请说明理由.
3.(2022·安徽·高三开学考试)如图,在三棱柱中,平面 .
(1)求证:;
(2)若,直线与平面所成的角为 ,求二面角的正弦值.
4.(2022·广东湛江·高二期末)如图,在三棱柱中,平面,,,且为线段的中点,连接,,.
(1)证明:;
(2)若到直线的距离为,求平面与平面夹角的余弦值.
5.(2022·浙江嘉兴·高一期末)如图,在四棱锥中,底面ABCD是直角梯形,,,平面平面PBC,,.
(1)求证:;
(2)若PD与平面PBC所成的角为,求二面角的余弦值.
6.(2022·广东广州·高二期末)如图,四棱锥中,四边形是矩形,平面,E是的中点.
(1)若的中点是M,求证:平面;
(2)若,求平面与平面所成二面角的正弦值.
7.(2022·贵州·遵义航天高级中学高二阶段练习(理))如图,在四面体ABCD中,是正三角形,是直角三角形,,AB=BD.
(1)求证:平面平面ABC;
(2)若,二面角的余弦值为,求m.
8.(2022·全国·高三专题练习)如图,为圆柱的轴截面,是圆柱上异于,的母线.
(1)证明:平面DEF;
(2)若,当三棱锥的体积最大时,求二面角的余弦值.
9.(2022·河南·信阳高中高二阶段练习(理))如图所示,四棱锥中,底面ABCD为矩形,AC与BD交于点O,点E在线段SD上,且平面SAB,二面角,均为直二面角.
(1)求证:;
(2)若,且钝二面角的余弦值为,求AB的值.
10.(2022·广东·执信中学高二期中)已知△ABC是边长为6的等边三角形,点M,N分别是边AB,AC的三等分点,且,,沿MN将△AMN折起到的位置,使.
(1)求证:平面MBCN;
(2)在线段BC上是否存在点D,使平面与平面所成锐二面角的余弦值为?若存在,设,求的值;若不存在,说明理由.
11.(2022·全国·高三专题练习(理))如图,在三棱锥D—ABC中,G是△ABC的重心,E,F分别在BC,CD上,且,.
(1)证明:平面平面ABD;
(2)若平面ABC,,,,P是线段EF上一点,当线段GP长度取最小值时,求二面角的余弦值.
12.(2022·江苏泰州·高三期末)如图,在三棱锥中,.
(1)平面平面;
(2)点是棱上一点,,且二面角与二面角的大小相等,求实数的值.
13.(2022·四川·石室中学三模(理))在①,②,③,这三个条件中选择一个,补充在下面问题中,并给出解答
如图,在五面体中,已知___________,,,且,.
(1)求证:平面与平面;
(2)线段上是否存在一点,使得平面与平面夹角的余弦值等于,若存在,求的值;若不存在,说明理由.
③体积(距离)问题
1.(2022·河北·邢台市第二中学高二阶段练习)如图,四棱锥的底面为菱形,,底面,分别是线段的中点,是线段上的一点.
(1)若是直线与平面的交点,试确定的值;
(2)若直线与平面所成角的正弦值为,求三棱锥体积.
2.(2022·青海·模拟预测(理))如图,在四棱锥A-BCDE中,底面BCDE为矩形,M为CD中点,连接BM,CE交于点F,G为△ABE的重心.
(1)证明:平面ABC
(2)已知平面ABC⊥BCDE,平面ACD⊥平面BCDE,BC=3,CD=6,当平面GCE与平面ADE所成锐二面角为60°时,求G到平面ADE的距离.
3.(2022·全国·高三专题练习)如图,在三棱柱中,为等边三角形,四边形是边长为2的正方形,为中点,且.
(1)求证:平面;
(2)若点在线段上,且直线与平面所成角的正弦值为,求点到平面的距离.
4.(2022·湖南·邵阳市第二中学高二开学考试)如图,在三棱柱ABC-A1B1C1中,四边形A1C1CA为菱形,∠B1A1A=∠C1A1A=60°,AC=4,AB=2,平面ACC1A1⊥平面ABB1A1,Q在线段AC上移动,P为棱AA1的中点.
(1)若Q为线段AC的中点,H为BQ中点,延长AH交BC于D,求证:AD∥平面B1PQ;
(2)若二面角B1-PQ-C1的平面角的余弦值为,求点P到平面BQB1的距离.
5.(2022·江苏·沭阳如东中学高三阶段练习)如图,已知四棱台的上、下底面分别是边长为2和4的正方形, ,且底面,点分别在棱、上·
(1)若P是的中点,证明:;
(2)若平面,二面角的余弦值为,求四面体的体积.
6.(2022·湖南·雅礼中学一模)如图,在四边形中,,,,.沿将翻折到的位置,使得.
(1)作出平面与平面的交线,并证明平面;
(2)点是棱于异于,的一点,连接,当二面角的余弦值为,求此时三棱锥的体积.
7.(2022·陕西·西北工业大学附属中学模拟预测(理))如图,在多面体中,平面⊥平面,,,DEAC,AD=BD=1.
(Ⅰ)求AB的长;
(Ⅱ)已知,求点E到平面BCD的距离的最大值.
8.(2022·湖北·随州市曾都区第一中学高二开学考试)如图,在四棱锥中,底面,底面是直角梯形,,点在上,且.
(1)已知点在上,且,求证:平面平面.
(2)求点到平面的距离.
9.(2022·河南省叶县高级中学模拟预测(文))如图,四棱锥的底面为直角梯形,底面,,,,为棱上一点.
(1)证明:平面平面;
(2)若,求点到平面的距离.
10.(2022·福建·福州四中高一期末)如图在四面体中,是边长为2的等边三角形,为直角三角形,其中D为直角顶点,.E、F、G、H分别是线段、、、上的动点,且四边形为平行四边形.
(1)求证:平面;
(2)设二面角的平面角为,求在区间变化的过程中,线段在平面上的投影所扫过的平面区域的面积;
(3)设,且平面平面,则当为何值时,多面体的体积恰好为?
④折叠问题
1.(2022·重庆八中高三阶段练习)如图甲,在矩形中,为线段的中点,沿直线折起,使得,如图乙.
(1)求证:平面;
(2)线段上是否存在一点,使得平面与平面所成的角为?若不存在,说明理由;若存在,求出点的位置.
2.(2022·黑龙江·哈尔滨市第六中学校高一期末)如图1,在边长为4的菱形ABCD中,∠DAB=60°,点,别是边BC,CD的中点,,.沿MN将翻折到的位置,连接PA、PB、PD,得到如图2所示的五棱锥P—ABMND.
(1)在翻折过程中是否总有平面PBD⊥平面PAG?证明你的结论;
(2)当四棱锥P—MNDB体积最大时,在线段PA上是否存在一点Q,使得平面QMN与平面PMN夹角的余弦值为?若存在,试确定点Q的位置;若不存在,请说明理由.
3.(2022·全国·高二专题练习)如图所示,在边长为的正方形中,点在线段上,且,作,分别交于点,作,分别交于点,将该正方形沿折叠,使得与重合,构成如图所示的三棱柱.
(1)在三棱柱中,求证:平面;
(2)试判断直线是否与平面平行,并说明理由.
4.(2022·山西大附中高二开学考试)如图,在直角梯形中,,,,为的中点,沿将折起,使得点到点的位置,且,为的中点,是上的动点(与点,不重合).
(1)证明:平面平面;
(2)是否存在点,使得二面角的正切值为?若存在,确定点位置;若不存在,请说明理由.
5.(2022·福建泉州·高一期末)在矩形ABCD中,.点E,F分别在AB,CD上,且,沿EF将四边形AEFD翻折至四边形,点平面BCFE.
(1)若平面⊥平面BCFE,求三棱锥的体积;
(2)在翻折的过程中,设二面角的平面角为,求tan的最大值.
6.(2022·广西玉林·高一期末)如图①,在梯形中,,,,,分别是,上的点,,.沿将梯形翻折,使平面平面(如图②).
(1)判断平面与平面的位置关系,并说明理由;
(2)作出二面角的平面角,说明理由并求出它的余弦值.
7.(2022·上海市青浦高级中学高一期末)在矩形ABCD中,,.点E,F分别在AB,CD上,且,.沿EF将四边形AEFD翻折至四边形,点平面BCFE.
(1)求证:平面;
(2)求证:与BC是异面直线;
(3)在翻折的过程中,设二面角的平面角为,求的最大值.
8.(2022·湖北十堰·高一期末)如图1,有一个边长为4的正六边形,将四边形沿着翻折到四边形的位置,连接,,形成的多面体如图2所示.
(1)证明:.
(2)若二面角的大小为,是线段上的一个动点(与,不重合),试问四棱锥与四棱锥的体积之和是否为定值?若是,求出这个定值;若不是,请说明理由.
9.(2022·全国·高三专题练习)如图,等腰直角△ACD的斜边AC为直角△ABC的直角边,E是AC的中点,F在BC上.将三角形ACD沿AC翻折,分别连接DE,DF,EF,使得平面平面ABC.已知,,
(1)证明:平面ABD;
(2)若,求二面角的余弦值.
10.(2022·陕西·西北工业大学附属中学模拟预测(理))如图(1),在正方形中,、、分别为、、的中点,点在对角线上,且,将、、分别沿、、折起,使、、三点重合(记为),得四面体(如图(2)),在图(2)中.
(1)求证:平面;
(2)在上,求一点,使二面角的大小为.
11.(2022·山东·肥城市教学研究中心模拟预测)如图1,已知等边的边长为,点分别是边上的点,且满足,如图2,将沿折起到的位置.
(1)求证:平面平面;
(2)给出三个条件:①;②平面平面;③四棱锥的体积为,从中任选一个,求平面和平面的夹角的余弦值.
12.(2022·全国·高三专题练习)如图甲,等腰梯形ABCD中,,于点E,且,将梯形沿着DE翻折,如图乙,使得A到Р点,且.
(1)求直线PD与平面EBCD所成角的正弦值;
(2)若,求三棱锥的表面积.
相关试卷
这是一份新高考版2023年高考数学必刷压轴题专题18立体几何与空间向量选填压轴题(学生版),共9页。
这是一份新高考版2023年高考数学必刷压轴题专题21椭圆解答题压轴题(学生版),共27页。试卷主要包含了已知椭圆,已知椭圆C,已知椭圆的离心率为,且过点等内容,欢迎下载使用。
这是一份专题19 立体几何与空间向量(选填压轴题) 高考数学压轴题(新高考版),文件包含专题19立体几何与空间向量选填压轴题教师版docx、专题19立体几何与空间向量选填压轴题学生版docx等2份试卷配套教学资源,其中试卷共45页, 欢迎下载使用。