2025版高考数学一轮总复习第6章数列第4讲数列求和提能训练
展开一、单选题
1.已知数列{an}是公差不为零的等差数列,{bn}为等比数列,且a1=b1=1,a2=b2,a4=b3,设cn=an+bn,则数列{cn}的前10项和为( A )
A.1 078 B.1 068
C.566 D.556
[解析] 设等差数列{an}的公差为d≠0,等比数列{bn}的公比为q,根据a1=b1=1,a2=b2,a4=b3,利用通项公式即可解得d,q,再利用求和公式即可得出结论.设等差数列{an}的公差为d≠0,等比数列{bn}的公比为q,∵a1=b1=1,a2=b2,a4=b3,∴1+d=q,1+3d=q2,d≠0,解得:d=1,q=2.∴an=1+n-1=n,bn=2n-1.∴cn=an+bn=n+2n-1.则数列{cn}的前10项和=eq \f(10×1+10,2)+eq \f(210-1,2-1)=1 078.故选A.
2.已知数列{an}满足a1=16,(n+1)an+1=2(n+2)an,则{an}的前100项和为( D )
A.25×2102 B.25×2103
C.25×2104 D.25×2105
[解析] 因为(n+1)an+1=2(n+2)an,a1=16,所以eq \f(an+1,n+2)=eq \f(2an,n+1),eq \f(a1,2)=8.所以数列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(an,n+1)))是以8为首项,2为公比的等比数列,则eq \f(an,n+1)=8×2n-1=2n+2,即an=(n+1)2n+2,设{an}的前n项和为Sn,则Sn=2×23+3×24+4×25+…+(n+1)×2n+2,则2Sn=2×24+3×25+4×26+…+n×2n+2+(n+1)×2n+3,两式相减得-Sn=2×23+24+25+26+…+2n+2-(n+1)2n+3=2+eq \f(21-2n+2,1-2)-(n+1)2n+3=-n×2n+3,所以Sn=n×2n+3,所以S100=100×2103=25×2105,选D.
3.已知数列{an}的通项公式是an=eq \f(2n-1,2n),其前n项和Sn=eq \f(321,64),则项数n等于( D )
A.13 B.10
C.9 D.6
[解析] ∵an=eq \f(2n-1,2n)=1-eq \f(1,2n),
∴Sn=n-eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)+\f(1,22)+…+\f(1,2n)))=n-1+eq \f(1,2n).
而eq \f(321,64)=5+eq \f(1,64),∴n-1+eq \f(1,2n)=5+eq \f(1,64).∴n=6.
4.设数列{an}的通项公式为an=(-1)n(2n-1)·cs eq \f(nπ,2)-1,其前n项和为Sn,则S2 022=( D )
A.4 041 B.-5
C.-2 021 D.-4 045
[解析] 根据题意,分类讨论n=4k-3或n=4k-1,k∈N*时,cs eq \f(nπ,2)=0,n=4k-2,k∈N*时,cs eq \f(nπ,2)=-1,n=4k,k∈N*时,cs eq \f(nπ,2)=1,即可得出答案.∵an=(-1)n(2n-1)·cs eq \f(nπ,2)-1,∴当n=4k-3或n=4k-1,k∈N*时,cs eq \f(nπ,2)=0,a4k-3=a4k-1=-1;当n=4k-2,k∈N*时,cs eq \f(nπ,2)=-1,a4k-2=[2×(4k-2)-1]×(-1)-1=-8k+4;当n=4k,k∈N*时,cs eq \f(nπ,2)=1,a4k=2×4k-1-1=8k-2,∴a4k-3+a4k-2+a4k-1+a4k=0,∴S2 022=S2 020+a2 021+a2 022=a2 021+a2 022=-1+(2×2 022-1)·(-1)-1=-4 045,故选D.
5.已知数列{an}满足a1=1,且对任意的n∈N*都有an+1=a1+an+n,则eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(1,an)))的前100项和为( D )
A.eq \f(100,101) B.eq \f(99,100)
C.eq \f(101,100) D.eq \f(200,101)
[解析] ∵an+1=a1+an+n,a1=1,∴an+1-an=1+n.
∴an-an-1=n(n≥2).
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=n+(n-1)+…+2+1=eq \f(nn+1,2).
∴eq \f(1,an)=eq \f(2,nn+1)=2eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,n)-\f(1,n+1))).
∴eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(1,an)))的前100项和为2eq \b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,2)+\f(1,2)-\f(1,3)+…+\f(1,100)-\f(1,101)))=2eq \b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,101)))=eq \f(200,101).故选D.
6.(2022·重庆调研)已知数列{an}满足an=eq \f(n,n+1),则a1+eq \f(a2,22)+eq \f(a3,32)+…+eq \f(a2 022,2 0222)=( A )
A.eq \f(2 022,2 023) B.eq \f(2 020,2 021)
C.eq \f(2 021,2 022) D.eq \f(2 019,2 020)
[解析] 由题知,数列{an}满足an=eq \f(n,n+1),所以数列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(an,n2)))的通项公式为eq \f(an,n2)=eq \f(1,nn+1)=eq \f(1,n)-eq \f(1,n+1),所以a1+eq \f(a2,22)+eq \f(a3,32)+…+eq \f(a2 022,2 0222)=1-eq \f(1,2)+eq \f(1,2)-eq \f(1,3)+…+eq \f(1,2 022)-eq \f(1,2 023)=1-eq \f(1,2 023)=eq \f(2 022,2 023).
7.在数列{an}中,已知对任意n∈N*,a1+a2+a3+…+an=3n-1,则aeq \\al(2,1)+aeq \\al(2,2)+aeq \\al(2,3)+…+aeq \\al(2,n)等于( B )
A.(3n-1)2 B.eq \f(1,2)(9n-1)
C.9n-1 D.eq \f(1,4)(3n-1)
[解析] 因为a1+a2+…+an=3n-1,所以a1+a2+…+an-1=3n-1-1(n≥2).则当n≥2时,an=2·3n-1.
当n=1时,a1=3-1=2,适合上式,所以an=2·3n-1(n∈N*).
则数列{aeq \\al(2,n)}是首项为4,公比为9的等比数列,aeq \\al(2,1)+…+aeq \\al(2,n)=eq \f(41-9n,1-9)=eq \f(1,2)(9n-1).故选B.
8.(2023·辽宁凌源二中联考)已知数列{an}与{bn}的前n项和分别为Sn,Tn,且an>0,6Sn=aeq \\al(2,n)+3an,n∈N*,bn=eq \f(2an,2an-12an+1-1),若对任意的n∈N*,k>Tn恒成立,则k的最小值是( C )
A.eq \f(1,7) B.49
C.eq \f(1,49) D.eq \f(8,441)
[解析] 当n=1时,6a1=aeq \\al(2,1)+3a1,解得a1=3或a1=0(舍去),又6Sn=aeq \\al(2,n)+3an,∴6Sn+1=aeq \\al(2,n+1)+3an+1,两式作差可得6an+1=aeq \\al(2,n+1)-aeq \\al(2,n)+3an+1-3an,整理可得(an+1+an)(an+1-an-3)=0,结合an>0可得an+1-an-3=0,∴an+1-an=3,故数列{an}是首项为3,公差为3的等差数列,∴an=3+(n-1)×3=3n,则bn=eq \f(2an,2an-12an+1-1)=eq \f(8n,8n-18n+1-1)=eq \f(1,7)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,8n-1)-\f(1,8n+1-1))),
∴Tn=eq \f(1,7)eq \b\lc\[\rc\](\a\vs4\al\c1(\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,8-1)-\f(1,82-1)))+\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,82-1)-\f(1,83-1)))+…+\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,8n-1)-\f(1,8n+1-1)))))=eq \f(1,7)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,7)-\f(1,8n+1-1)))
9.(2023·济南调研)已知数列{an}:eq \f(1,2),eq \f(1,3)+eq \f(2,3),eq \f(1,4)+eq \f(2,4)+eq \f(3,4),…,eq \f(1,10)+eq \f(2,10)+eq \f(3,10)+…+eq \f(9,10),…,若bn=eq \f(1,an·an+1),设数列{bn}的前n项和Sn,则( AC )
A.an=eq \f(n,2) B.an=n
C.Sn=eq \f(4n,n+1) D.Sn=eq \f(5n,n+1)
[解析] 由题意得an=eq \f(1,n+1)+eq \f(2,n+1)+…+eq \f(n,n+1)=eq \f(1+2+3+…+n,n+1)=eq \f(n,2),
∴bn=eq \f(1,\f(n,2)·\f(n+1,2))=eq \f(4,nn+1)=4eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,n)-\f(1,n+1))),
∴数列{bn}的前n项和
Sn=b1+b2+b3+…+bn=
4eq \b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,2)+\f(1,2)-\f(1,3)+\f(1,3)-\f(1,4)+…+\f(1,n)-\f(1,n+1)))
=4eq \b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,n+1)))=eq \f(4n,n+1).故选AC.
10.(2024·重庆月考)已知数列{an}满足a1=-2,eq \f(an,an-1)=eq \f(2n,n-1)(n≥2,n∈N*),{an}的前n项和为Sn,则( ABD )
A.a2=-8 B.an=-2n·n
C.S3=-30 D.Sn=(1-n)·2n+1-2
[解析] 由题意可得,eq \f(a2,a1)=2×eq \f(2,1),eq \f(a3,a2)=2×eq \f(3,2),eq \f(a4,a3)=2×eq \f(4,3),…,eq \f(an,an-1)=2×eq \f(n,n-1)(n≥2,n∈N*),以上式子左、右分别相乘得eq \f(an,a1)=2n-1·n(n≥2,n∈N*),把a1=-2代入,得an=-2n·n(n≥2,n∈N*),又a1=-2符合上式,故数列{an}的通项公式为an=-2n·n(n∈N*),a2=-8,故A,B正确;Sn=-(1×2+2×22+…+n·2n),则2Sn=-[1×22+2×23+…+(n-1)·2n+n·2n+1],两式相减,得Sn=2+22+23+…+2n-n·2n+1=2n+1-2-n·2n+1=(1-n)·2n+1-2(n∈N*),故S3=-34,故C错误,D正确.
11.已知数列{an}的首项为4,且满足2(n+1)an-nan+1=0(n∈N*),则( BD )
A.数列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(an,n)))为等差数列
B.数列{an}为递增数列
C.数列{an}的前n项和Sn=(n-1)·2n+1+4
D.数列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(an,2n+1)))的前n项和Tn=eq \f(n2+n,2)
[解析] 由2(n+1)an-nan+1=0得eq \f(an+1,n+1)=2×eq \f(an,n),所以数列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(an,n)))是以eq \f(a1,1)=a1=4为首项,2为公比的等比数列,故A错误;因为eq \f(an,n)=4×2n-1=2n+1,所以an=n·2n+1,显然递增,故B正确;因为Sn=1×22+2×23+…+n·2n+1,2Sn=1×23+2×24+…+n·2n+2,所以-Sn=1×22+23+…+2n+1-n·2n+2=eq \f(221-2n,1-2)-n·2n+2,故Sn=(n-1)·2n+2+4,故C错误;因为eq \f(an,2n+1)=eq \f(n·2n+1,2n+1)=n,所以数列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(an,2n+1)))的前n项和Tn=eq \f(n1+n,2)=eq \f(n2+n,2),故D正确.
三、填空题
12.eq \f(1,22-1)+eq \f(1,32-1)+eq \f(1,42-1)+…+eq \f(1,n+12-1)= eq \f(3,4)-eq \f(1,2)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,n+1)+\f(1,n+2))) .
[解析] ∵eq \f(1,n+12-1)=eq \f(1,n2+2n)=eq \f(1,nn+2)=eq \f(1,2)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,n)-\f(1,n+2))),
∴eq \f(1,22-1)+eq \f(1,32-1)+eq \f(1,42-1)+…+eq \f(1,n+12-1)
=eq \f(1,2)eq \b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,3)+\f(1,2)-\f(1,4)+\f(1,3)-\f(1,5)+…+\f(1,n)-\f(1,n+2)))
=eq \f(1,2)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)-\f(1,n+1)-\f(1,n+2)))
=eq \f(3,4)-eq \f(1,2)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,n+1)+\f(1,n+2))).
13.(2023·海南三亚模拟)已知数列{an}的前n项和Sn=10n-n2,数列{bn}满足bn=|an|,设数列{bn}的前n项和为Tn,则T4= 24 ,T30= 650 .
[解析] 当n=1时,a1=S1=9,当n≥2时,an=Sn-Sn-1=10n-n2-[10(n-1)-(n-1)2]=-2n+11,当n=1时也满足,所以an=-2n+11(n∈N*),所以当n≤5时,an>0,bn=an,当n>5时,an<0,bn=-an,所以T4=S4=10×4-42=24,T30=S5-a6-a7-…-a30=2S5-S30=2×(10×5-52)-(10×30-302)=650.
14.(2023·广东省五校协作体高三第一次联考)已知数列{an}满足:a1为正整数,an+1=eq \b\lc\{\rc\ (\a\vs4\al\c1(\f(an,2),an为偶数,,3an+1,an为奇数,))如果a1=1,则a1+a2+a3+…+a2 018= 4 709 .
[解析] 由已知得a1=1,a2=4,a3=2,a4=1,a5=4,a6=2,{an}是周期为3的数列,a1+a2+…+a2 018=(1+4+2)×672+1+4=4 709.
四、解答题
15.(2017·课标全国Ⅲ)设数列{an}满足a1+3a2+…+(2n-1)an=2n.
(1)求数列{an}的通项公式;
(2)求数列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(an,2n+1)))的前n项和.
[解析] (1)因为a1+3a2+…+(2n-1)an=2n,
故当n≥2时,a1+3a2+…+(2n-3)an-1=2(n-1).
两式相减得(2n-1)an=2,所以an=eq \f(2,2n-1)(n≥2).
又由题设可得a1=2,满足上式.
从而{an}的通项公式为an=eq \f(2,2n-1).
(2)记eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(an,2n+1)))的前n项和为Sn.由(1)知eq \f(an,2n+1)=eq \f(2,2n+12n-1)=eq \f(1,2n-1)-eq \f(1,2n+1).
则Sn=eq \f(1,1)-eq \f(1,3)+eq \f(1,3)-eq \f(1,5)+…+eq \f(1,2n-1)-eq \f(1,2n+1)=eq \f(2n,2n+1).
16.(2023·郑州市第一次质量预测)已知数列{an}为等比数列,首项a1=4,数列{bn}满足bn=lg2an,且b1+b2+b3=12.
(1)求数列{an}的通项公式;
(2)令cn=eq \f(4,bn·bn+1)+an,求数列{cn}的前n项和Sn.
[解析] (1)由bn=lg2an和b1+b2+b3=12,得lg2(a1a2a3)=12,
∴a1a2a3=212.
设等比数列{an}的公比为q,
∵a1=4,∴a1a2a3=4·4q·4q2=26·q3=212,
计算得q=4.∴an=4·4n-1=4n.
(2)由(1)得bn=lg24n=2n,
cn=eq \f(4,2n·2n+1)+4n=eq \f(1,nn+1)+4n=eq \f(1,n)-eq \f(1,n+1)+4n.
设数列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(1,nn+1)))的前n项和为An,则An=1-eq \f(1,2)+eq \f(1,2)-eq \f(1,3)+…+eq \f(1,n)-eq \f(1,n+1)=eq \f(n,n+1),
设数列{4n}的前n项和为Bn,则Bn=eq \f(41-4n,1-4)=eq \f(4,3)(4n-1),
∴Sn=eq \f(n,n+1)+eq \f(4,3)(4n-1).
B组能力提升
1.若数列{an},{bn}满足anbn=1,an=n2+3n+2,则{bn}的前10项之和为( B )
A.eq \f(1,3) B.eq \f(5,12)
C.eq \f(1,2) D.eq \f(7,12)
[解析] ∵bn=eq \f(1,an)=eq \f(1,n+1n+2)=eq \f(1,n+1)-eq \f(1,n+2),
∴S10=b1+b2+b3+…+b10
=eq \f(1,2)-eq \f(1,3)+eq \f(1,3)-eq \f(1,4)+eq \f(1,4)-eq \f(1,5)+…+eq \f(1,11)-eq \f(1,12)=eq \f(1,2)-eq \f(1,12)=eq \f(5,12).
2.已知数列{an}的前n项积为Tn,且满足an+1=eq \f(1+an,1-an)(n∈N*),若a1=eq \f(1,4),则T2 019为( C )
A.-4 B.-eq \f(3,5)
C.-eq \f(5,3) D.eq \f(1,4)
[解析] 直接利用数列的递推关系求出数列的周期,进一步求出结果.由an+1=eq \f(1+an,1-an),a1=eq \f(1,4),解得a2=eq \f(5,3),a3=-4,a4=-eq \f(3,5),a5=eq \f(1,4),…,所以T4=a1·a2·a3·a4=1,2 019=4×504+3,所以T2 019=(a1a2a3a4)·(a5a6a7a8)·…·(a2 017a2 018a2 019)=1×1×1×…×eq \f(1,4)×eq \f(5,3)×(-4)=-eq \f(5,3).故选C.
3.我国古代数学名著《九章算术》中,有已知长方形面积求一边的算法,其方法的前两步为:
(1)构造数列1,eq \f(1,2),eq \f(1,3),eq \f(1,4),…,eq \f(1,n);①
(2)将数列①的各项乘以eq \f(n,2),得到一个新数列a1,a2,a3,a4,…,an.
则a1a2+a2a3+a3a4+…+an-1an=( C )
A.eq \f(n2,4) B.eq \f(n-12,4)
C.eq \f(nn-1,4) D.eq \f(nn+1,4)
[解析] 依题意可得新数列为eq \f(n,2),eq \f(n,4),eq \f(n,6),…,eq \f(1,n)×eq \f(n,2),
所以a1a2+a2a3+…+an-1an=eq \f(n2,4)eq \b\lc\[\rc\ (\a\vs4\al\c1(\f(1,1×2)+\f(1,2×3)))+…+eq \b\lc\ \rc\](\a\vs4\al\c1(\f(1,n-1n)))
=eq \f(n2,4)eq \b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,2)+\f(1,2)-\f(1,3)+…+\f(1,n-1)-\f(1,n)))
=eq \f(n2,4)×eq \f(n-1,n)=eq \f(nn-1,4).故选C.
4.1+2x+3x2+…+nxn-1= eq \b\lc\{\rc\ (\a\vs4\al\c1(\f(nn+1,2)x=1,\f(1-1+nxn+nxn+1,1-x2)x≠1)) .(其中x≠0)
[解析] 当x=1时,1+2x+3x2+…+nxn-1=1+2+3+…+n=eq \f(nn+1,2),
当x≠1时.
解法一:记Sn=1+2x+3x2+…+nxn-1,则xSn=x+2x2+…+(n-1)xn-1+nxn,
两式相减得:(1-x)Sn=1+x+x2+…+xn-1-nxn
=eq \f(1-xn,1-x)-nxn,
∴Sn=eq \f(1-1+nxn+nxn+1,1-x2).
解法二:1+2x+3x2+…+nxn-1
=(x+x2+x3+…+xn)′
=eq \b\lc\[\rc\](\a\vs4\al\c1(\f(x1-xn,1-x)))′=eq \f(1-1+nxn+nxn+1,1-x2),
综上可知1+2x+3x2+…+nxn-1=
eq \b\lc\{\rc\ (\a\vs4\al\c1(\f(nn+1,2)x=1,,\f(1-1+nxn+nxn+1,1-x2)x≠1.))
5.(2023·山东省济南市历城第二中学高三模拟考试)等差数列{an}的前n项和为Sn,数列{bn}是等比数列,满足a1=3,b1=1,b2+S2=10,a5-2b2=a3.
(1)求数列{an}和{bn}的通项公式;
(2)令cn=eq \b\lc\{\rc\ (\a\vs4\al\c1(\f(2,Sn),n为奇数,bn,n为偶数)),设数列{cn}的前n项和为Tn,求T2n.
[解析] (1)设数列{an}的公差为d,数列{bn}的公比为q,
由b2+S2=10,a5-2b2=a3,
得eq \b\lc\{\rc\ (\a\vs4\al\c1(q+6+d=10,,3+4d-2q=3+2d,))解得eq \b\lc\{\rc\ (\a\vs4\al\c1(d=2,,q=2,))
∴an=3+2(n-1)=2n+1,bn=2n-1.
(2)由a1=3,an=2n+1得Sn=n(n+2),
当n为奇数,cn=eq \f(2,Sn)=eq \f(1,n)-eq \f(1,n+2),
当n为偶数,cn=2n-1.
∴T2n=(c1+c3+…+c2n-1)+(c2+c4+…+c2n)
=eq \b\lc\[\rc\](\a\vs4\al\c1(\b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,3)))+\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)-\f(1,5)))+…+\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2n-1)-\f(1,2n+1)))))+(2+23+…+22n-1)
=1-eq \f(1,2n+1)+eq \f(21-4n,1-4)=eq \f(2n,2n+1)+eq \f(2,3)(4n-1).
6.已知{an}为等差数列,前n项和为Sn(n∈N*),{bn}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.
(1)求{an}和{bn}的通项公式;
(2)求数列{a2nb2n-1}的前n项和(n∈N*).
[解析] (1)设等差数列{an}的公差为d,等比数列{bn}的公比为q.由已知b2+b3=12,得b1(q+q2)=12,而b1=2,所以q2+q-6=0.
又因为q>0,解得q=2.
所以bn=2n.
由b3=a4-2a1,可得3d-a1=8,①
由S11=11b4,可得a1+5d=16,②
联立①②,解得a1=1,d=3,
由此可得an=3n-2.
所以数列{an}的通项公式为an=3n-2,
数列{bn}的通项公式为bn=2n.
(2)设数列{a2nb2n-1)的前n项和为Tn,
由a2n=6n-2,b2n-1=2×4n-1,
有a2nb2n-1=(3n-1)×4n,
故Tn=2×4+5×42+8×43+…+(3n-1)×4n,
4Tn=2×42+5×43+8×44+…+(3n-4)×4n+(3n-1)×4n+1,
上述两式相减,得
-3Tn=2×4+3×42+3×43+…+3×4n-(3n-1)×4n+1
=eq \f(12×1-4n,1-4)-4-(3n-1)×4n+1
=-(3n-2)×4n+1-8.
得Tn=eq \f(3n-2,3)×4n+1+eq \f(8,3).
所以数列{a2nb2n-1}的前n项和为eq \f(3n-2,3)×4n+1+eq \f(8,3).
2025版高考数学一轮总复习第6章数列第2讲等差数列及其前n项和提能训练: 这是一份2025版高考数学一轮总复习第6章数列第2讲等差数列及其前n项和提能训练,共7页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
2025版高考数学一轮总复习第6章数列高考大题规范解答__高考中数列问题的热点题型提能训练: 这是一份2025版高考数学一轮总复习第6章数列高考大题规范解答__高考中数列问题的热点题型提能训练,共6页。
2025版高考数学一轮总复习第6章数列第3讲等比数列及其前n项和提能训练: 这是一份2025版高考数学一轮总复习第6章数列第3讲等比数列及其前n项和提能训练,共8页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。