高中数学竞赛标准教材10第十章 直线与圆的方程【讲义】
展开
这是一份高中数学竞赛标准教材10第十章 直线与圆的方程【讲义】,共7页。学案主要包含了基础知识,方法与例题,基础训练题,高考水平训练题,联赛一试水平训练题,联赛二试水平训练题等内容,欢迎下载使用。
一、基础知识
1.解析几何的研究对象是曲线与方程。解析法的实质是用代数的方法研究几何.首先是通过映射建立曲线与方程的关系,即如果一条曲线上的点构成的集合与一个方程的解集之间存在一一映射,则方程叫做这条曲线的方程,这条曲线叫做方程的曲线。如x2+y2=1是以原点为圆心的单位圆的方程。
2.求曲线方程的一般步骤:(1)建立适当的直角坐标系;(2)写出满足条件的点的集合;(3)用坐标表示条件,列出方程;(4)化简方程并确定未知数的取值范围;(5)证明适合方程的解的对应点都在曲线上,且曲线上对应点都满足方程(实际应用常省略这一步)。
3.直线的倾斜角和斜率:直线向上的方向与x轴正方向所成的小于1800的正角,叫做它的倾斜角。规定平行于x轴的直线的倾斜角为00,倾斜角的正切值(如果存在的话)叫做该直线的斜率。根据直线上一点及斜率可求直线方程。
4.直线方程的几种形式:(1)一般式:Ax+By+C=0;(2)点斜式:y-y0=k(x-x0);(3)斜截式:y=kx+b;(4)截距式:;(5)两点式:;(6)法线式方程:xcsθ+ysinθ=p(其中θ为法线倾斜角,|p|为原点到直线的距离);(7)参数式:(其中θ为该直线倾斜角),t的几何意义是定点P0(x0, y0)到动点P(x, y)的有向线段的数量(线段的长度前添加正负号,若P0P方向向上则取正,否则取负)。
5.到角与夹角:若直线l1, l2的斜率分别为k1, k2,将l1绕它们的交点逆时针旋转到与l2重合所转过的最小正角叫l1到l2的角;l1与l2所成的角中不超过900的正角叫两者的夹角。若记到角为θ,夹角为α,则tanθ=,tanα=.
6.平行与垂直:若直线l1与l2的斜率分别为k1, k2。且两者不重合,则l1//l2的充要条件是k1=k2;l1l2的充要条件是k1k2=-1。
7.两点P1(x1, y1)与P2(x2, y2)间的距离公式:|P1P2|=。
8.点P(x0, y0)到直线l: Ax+By+C=0的距离公式:。
9.直线系的方程:若已知两直线的方程是l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0,则过l1, l2交点的直线方程为A1x+B1y+C1+λ(A2x+B2y+C2=0;由l1与l2组成的二次曲线方程为(A1x+B1y+C1)(A2x+B2y+C2)=0;与l2平行的直线方程为A1x+B1y+C=0().
10.二元一次不等式表示的平面区域,若直线l方程为Ax+By+C=0. 若B>0,则Ax+By+C>0表示的区域为l上方的部分,Ax+By+C0)。其圆心为,半径为。若点P(x0, y0)为圆上一点,则过点P的切线方程为
①
14.根轴:到两圆的切线长相等的点的轨迹为一条直线(或它的一部分),这条直线叫两圆的根轴。给定如下三个不同的圆:x2+y2+Dix+Eiy+Fi=0, i=1, 2, 3. 则它们两两的根轴方程分别为(D1-D2)x+(E1-E2)y+(F1-F2)=0; (D2-D3)x+(E2-E3)y+(F2-F3)=0; (D3-D1)x+(E3-E1)y+(F3-F1)=0。不难证明这三条直线交于一点或者互相平行,这就是著名的蒙日定理。
二、方法与例题
1.坐标系的选取:建立坐标系应讲究简单、对称,以便使方程容易化简。
例1 在ΔABC中,AB=AC,∠A=900,过A引中线BD的垂线与BC交于点E,求证:∠ADB=∠CDE。
[证明] 见图10-1,以A为原点,AC所在直线为x轴,建立直角坐标系。设点B,C坐标分别为(0,2a),(2a,0),则点D坐标为(a, 0)。直线BD方程为, ①直线BC方程为x+y=2a, ②设直线BD和AE的斜率分别为k1, k2,则k1=-2。因为BDAE,所以k1k2=-1.所以,所以直线AE方程为,由解得点E坐标为。
所以直线DE斜率为因为k1+k3=0.
所以∠BDC+∠EDC=1800,即∠BDA=∠EDC。
例2 半径等于某个正三角形高的圆在这个三角形的一条边上滚动。证明:三角形另两条边截圆所得的弧所对的圆心角为600。
[证明] 以A为原点,平行于正三角形ABC的边BC的直线为x轴,建立直角坐标系见图10-2,设⊙D的半径等于BC边上的高,并且在B能上能下滚动到某位置时与AB,AC的交点分别为E,F,设半径为r,则直线AB,AC的方程分别为,.设⊙D的方程为(x-m)2+y2=r2.①设点E,F的坐标分别为(x1,y1),(x2,y2),则,分别代入①并消去y得
所以x1, x2是方程4x2-2mx+m2-r2=0的两根。
由韦达定理,所以
|EF|2=(x1-x2)2+(y1-y2)2=(x1-x2)2+3(x1-x2)2
=4(x1+x2)2-4x1x2=m2-(m2-r2)=r2.
所以|EF|=r。所以∠EDF=600。
2.到角公式的使用。
例3 设双曲线xy=1的两支为C1,C2,正ΔPQR三顶点在此双曲线上,求证:P,Q,R不可能在双曲线的同一支上。
[证明] 假设P,Q,R在同一支上,不妨设在右侧一支C1上,并设P,Q,R三点的坐标分别为且00}.MN,a的最大值与最小值的和是__________.
6.圆x2+y2+x-6y+m=0与直线x+2y-3=0交于P,Q两点,O为原点,OPOQ,则m=__________.
7.已知对于圆x2+(y-1)2=1上任意一点P(x,y),使x+y+m≥0恒成立,m范围是__________.
8.当a为不等于1的任何实数时,圆x2-2ax+y2+2(a-2)y+2=0均与直线l相切,则直线l的方程为__________.
9.在ΔABC中,三个内角A,B,C所对应的边分别为a,b,c,若lgsinA,lgsinB, lgsinC成等差数列,那么直线xsin2A+ysinA=a与直线xsin2B+ysinC=c的位置关系是__________.
10.设A={(x,y)|0≤x≤2,0≤y≤2},B={(x,y)|x≤10,y≥2,y≤x-4}是坐标平面xOy上的点集,C=所围成图形的面积是__________.
11.求圆C1:x2+y2+2x+6y+9=0与圆C2:x2+y2-6x+2y+1=0的公切线方程。
12.设集合L={直线l与直线y=2x相交,且以交点的横坐标为斜率}。
(1)点(-2,2)到L中的哪条直线的距离最小?
(2)设a∈R+,点P(-2, a)到L中的直线的距离的最小值设为dmin,求dmin的表达式。
13.已知圆C:x2+y2-6x-8y=0和x轴交于原点O和定点A,点B是动点,且∠OBA=900,OB交⊙C于M,AB交⊙C于N。求MN的中点P的轨迹。
五、联赛一试水平训练题
1.在直角坐标系中纵横坐标都是有理数的点称为有理点。若a为无理数,过点(a,0)的所有直线中,每条直线上至少存在两个有理点的直线有_______条。
2.等腰ΔABC的底边BC在直线x+y=0上,顶点A(2,3),如果它的一腰平行于直线x-4y+2=0,则另一腰AC所在的直线方程为__________.
3.若方程2mx2+(8+m2)xy+4my2+(6-m)x+(3m-4)y-3=0表示表示条互相垂直的直线,则m=__________.
4.直线x+7y-5=0分圆x2+y2=1所成的两部分弧长之差的绝对值是__________.
5.直线y=kx-1与曲线y=有交点,则k的取值范围是__________.
6.经过点A(0,5)且与直线x-2y=0, 2x+y=0都相切的圆方程为__________.
7.在直角坐标平面上,同时满足条件:y≤3x, y≥x, x+y≤100的整点个数是__________.
8.平面上的整点到直线的距离中的最小值是__________.
9.y=lg(10-mx2)的定义域为R,直线y=xsin(arctanm)+10的倾斜角为__________.
10.已知f(x)=x2-6x+5,满足的点(x,y)构成图形的面积为__________.
11.已知在ΔABC边上作匀速运动的点D,E,F,在t=0时分别从A,B,C出发,各以一定速度向B,C,A前进,当时刻t=1时,分别到达B,C,A。
(1)证明:运动过程中ΔDEF的重心不变;
(2)当ΔDEF面积取得最小值时,其值是ΔABC面积的多少倍?
12.已知矩形ABCD,点C(4,4),点A在圆O:x2+y2=9(x>0,y>0)上移动,且AB,AD两边始终分别平行于x轴、y轴。求矩形ABCD面积的最小值,以及取得最小值时点A的坐标。
13.已知直线l: y=x+b和圆C:x2+y2+2y=0相交于不同两点A,B,点P在直线l上,且满足|PA|•|PB|=2,当b变化时,求点P的轨迹方程。
六、联赛二试水平训练题
1.设点P(x,y)为曲线|5x+y|+|5x-y|=20上任意一点,求x2-xy+y2的最大值、最小值。
2.给定矩形Ⅰ(长为b,宽为a),矩形Ⅱ(长为c、宽为d),其中a
相关学案
这是一份高中数学竞赛标准教材15第十五章 复数【讲义】,共7页。学案主要包含了基础知识,方法与例题,基础训练题,高考水平训练题,联赛二试水平训练题等内容,欢迎下载使用。
这是一份高中数学竞赛标准教材14第十四章 极限与导数【讲义】,共9页。
这是一份高中数学竞赛标准教材11第十一章 圆锥曲线【讲义】,共22页。学案主要包含了基础知识,方法与例题,基础训练题,高考水平测试题,联赛一试水平训练题,联赛二试水平训练题等内容,欢迎下载使用。