年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    高中数学竞赛标准教材13第十三章 排列组合与概率【讲义】

    高中数学竞赛标准教材13第十三章  排列组合与概率【讲义】第1页
    高中数学竞赛标准教材13第十三章  排列组合与概率【讲义】第2页
    高中数学竞赛标准教材13第十三章  排列组合与概率【讲义】第3页
    还剩6页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学竞赛标准教材13第十三章 排列组合与概率【讲义】

    展开

    这是一份高中数学竞赛标准教材13第十三章 排列组合与概率【讲义】,共9页。学案主要包含了基础知识,方法与例题,基础训练题,高考水平训练题,联赛一试水平训练题,联赛二试水平训练题等内容,欢迎下载使用。
    一、基础知识
    1.加法原理:做一件事有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事一共有N=m1+m2+…+mn种不同的方法。
    2.乘法原理:做一件事,完成它需要分n个步骤,第1步有m1种不同的方法,第2步有m2种不同的方法,……,第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×…×mn种不同的方法。
    3.排列与排列数:从n个不同元素中,任取m(m≤n)个元素,按照一定顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列,从n个不同元素中取出m个(m≤n)元素的所有排列个数,叫做从n个不同元素中取出m个元素的排列数,用表示,=n(n-1)…(n-m+1)=,其中m,n∈N,m≤n,
    注:一般地=1,0!=1,=n!。
    4.N个不同元素的圆周排列数为=(n-1)!。
    5.组合与组合数:一般地,从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合,即从n个不同元素中不计顺序地取出m个构成原集合的一个子集。从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用表示:
    6.组合数的基本性质:(1);(2);(3);(4);(5);(6)。
    7.定理1:不定方程x1+x2+…+xn=r的正整数解的个数为。
    [证明]将r个相同的小球装入n个不同的盒子的装法构成的集合为A,不定方程x1+x2+…+xn=r的正整数解构成的集合为B,A的每个装法对应B的唯一一个解,因而构成映射,不同的装法对应的解也不同,因此为单射。反之B中每一个解(x1,x2,…,xn),将xi作为第i个盒子中球的个数,i=1,2,…,n,便得到A的一个装法,因此为满射,所以是一一映射,将r个小球从左到右排成一列,每种装法相当于从r-1个空格中选n-1个,将球分n份,共有种。故定理得证。
    推论1 不定方程x1+x2+…+xn=r的非负整数解的个数为
    推论2 从n个不同元素中任取m个允许元素重复出现的组合叫做n个不同元素的m可重组合,其组合数为
    8.二项式定理:若n∈N+,则(a+b)n=.其中第r+1项Tr+1=叫二项式系数。
    9.随机事件:在一定条件下可能发生也可能不发生的事件叫随机事件。在大量重复进行同一试验时,事件A发生的频率总是接近于某个常数,在它附近摆动,这个常数叫做事件A发生的概率,记作p(A),0≤p(A)≤1.
    10.等可能事件的概率,如果一次试验中共有n种等可能出现的结果,其中事件A包含的结果有m种,那么事件A的概率为p(A)=
    11.互斥事件:不可能同时发生的两个事件,叫做互斥事件,也叫不相容事件。如果事件A1,A2,…,An彼此互斥,那么A1,A2,…,An中至少有一个发生的概率为
    p(A1+A2+…+An)= p(A1)+p(A2)+…+p(An).
    12.对立事件:事件A,B为互斥事件,且必有一个发生,则A,B叫对立事件,记A的对立事件为。由定义知p(A)+p()=1.
    13.相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。
    14.相互独立事件同时发生的概率:两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。即p(A•B)=p(A)•p(B).若事件A1,A2,…,An相互独立,那么这n个事件同时发生的概率为p(A1•A2• … •An)=p(A1)•p(A2)• … •p(An).
    15.独立重复试验:若n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n次试验是独立的.
    16.独立重复试验的概率:如果在一次试验中,某事件发生的概率为p,那么在n次独立重复试验中,这个事件恰好发生k次的概率为pn(k)=•pk(1-p)n-k.
    17.离散型随机为量的分布列:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫随机变量,例如一次射击命中的环数ξ就是一个随机变量,ξ可以取的值有0,1,2,…,10。如果随机变量的可能取值可以一一列出,这样的随机变量叫离散型随机变量。
    一般地,设离散型随机变量ξ可能取的值为x1,x2,…,xi,…,ξ取每一个值xi(i=1,2,…)的概率p(ξ=xi)=pi,则称表
    为随机变量ξ的概率分布,简称ξ的分布列,称Eξ=x1p1+x2p2+…+xnpn+…为ξ的数学期望或平均值、均值、简称期望,称Dξ=(x1-Eξ)2•p1+(x2-Eξ)2•p2+…+(xn-Eξ)2pn+…为ξ的均方差,简称方差。叫随机变量ξ的标准差。
    18.二项分布:如果在一次试验中某事件发生的概率是p,那么在n次独立重复试验中,这个事件恰好发生k次的概率为p(ξ=k)=, ξ的分布列为
    此时称ξ服从二项分布,记作ξ~B(n,p).若ξ~B(n,p),则Eξ=np,Dξ=npq,以上q=1-p.
    19.几何分布:在独立重复试验中,某事件第一次发生时所做试验的次数ξ也是一个随机变量,若在一次试验中该事件发生的概率为p,则p(ξ=k)=qk-1p(k=1,2,…),ξ的分布服从几何分布,Eξ=,Dξ=(q=1-p).
    二、方法与例题
    1.乘法原理。
    例1 有2n个人参加收发电报培训,每两个人结为一对互发互收,有多少种不同的结对方式?
    [解] 将整个结对过程分n步,第一步,考虑其中任意一个人的配对者,有2n-1种选则;这一对结好后,再从余下的2n-2人中任意确定一个。第二步考虑他的配对者,有2n-3种选择,……这样一直进行下去,经n步恰好结n对,由乘法原理,不同的结对方式有
    (2n-1)×(2n-3)×…×3×1=
    2.加法原理。
    例2 图13-1所示中没有电流通过电流表,其原因仅因为电阻断路的可能性共有几种?
    [解] 断路共分4类:1)一个电阻断路,有1种可能,只能是R4;2)有2个电阻断路,有-1=5种可能;3)3个电阻断路,有=4种;4)有4个电阻断路,有1种。从而一共有1+5+4+1=11种可能。
    3.插空法。
    例3 10个节目中有6个演唱4个舞蹈,要求每两个舞蹈之间至少安排一个演唱,有多少种不同的安排节目演出顺序的方式?
    [解] 先将6个演唱节目任意排成一列有种排法,再从演唱节目之间和前后一共7个位置中选出4个安排舞蹈有种方法,故共有=604800种方式。
    4.映射法。
    例4 如果从1,2,…,14中,按从小到大的顺序取出a1,a2,a3使同时满足:a2-a1≥3,a3-a2≥3,那么所有符合要求的不同取法有多少种?
    [解] 设S={1,2,…,14},={1,2,…,10};T={(a1,a2,a3)| a1,a2,a3∈S,a2-a1≥3,a3-a2≥3},={()∈},若,令,则(a1,a2,a3)∈T,这样就建立了从到T的映射,它显然是单射,其次若(a1,a2,a3)∈T,令,则,从而此映射也是满射,因此是一一映射,所以|T|==120,所以不同取法有120种。
    5.贡献法。
    例5 已知集合A={1,2,3,…,10},求A的所有非空子集的元素个数之和。
    [解] 设所求的和为x,因为A的每个元素a,含a的A的子集有29个,所以a对x的贡献为29,又|A|=10。所以x=10×29.
    [另解] A的k元子集共有个,k=1,2,…,10,因此,A的子集的元素个数之和为10×29。
    6.容斥原理。
    例6 由数字1,2,3组成n位数(n≥3),且在n位数中,1,2,3每一个至少出现1次,问:这样的n位数有多少个?
    [解] 用I表示由1,2,3组成的n位数集合,则|I|=3n,用A1,A2,A3分别表示不含1,不含2,不含3的由1,2,3组成的n位数的集合,则|A1|=|A2|=|A3|=2n,|A1A2|=|A2A3|=|A1A3|=1。|A1A2A3|=0。
    所以由容斥原理|A1A2A3|==3×2n-3.所以满足条件的n位数有|I|-|A1A2A3|=3n-3×2n+3个。
    7.递推方法。
    例7 用1,2,3三个数字来构造n位数,但不允许有两个紧挨着的1出现在n位数中,问:能构造出多少个这样的n位数?
    [解] 设能构造an个符合要求的n位数,则a1=3,由乘法原理知a2=3×3-1=8.当n≥3时:1)如果n位数的第一个数字是2或3,那么这样的n位数有2an-1;2)如果n位数的第一个数字是1,那么第二位只能是2或3,这样的n位数有2an-2,所以an=2(an-1+an-2)(n≥3).这里数列{an}的特征方程为x2=2x+2,它的两根为x1=1+,x2=1-,故an=c1(1+)n+ c2(1+)n,由a1=3,a2=8得,所以
    8.算两次。
    例8 m,n,r∈N+,证明: ①
    [证明] 从n位太太与m位先生中选出r位的方法有种;另一方面,从这n+m人中选出k位太太与r-k位先生的方法有种,k=0,1,…,r。所以从这n+m人中选出r位的方法有种。综合两个方面,即得①式。
    9.母函数。
    例9 一副三色牌共有32张,红、黄、蓝各10张,编号为1,2,…,10,另有大、小王各一张,编号均为0。从这副牌中任取若干张牌,按如下规则计算分值:每张编号为k的牌计为2k分,若它们的分值之和为2004,则称这些牌为一个“好牌”组,求好牌组的个数。
    [解] 对于n∈{1,2,…,2004},用an表示分值之和为n的牌组的数目,则an等于函数f(x)=(1+)2•(1+)3••••…•(1+)3的展开式中xn的系数(约定|x|

    相关学案

    高中数学竞赛标准教材15第十五章 复数【讲义】:

    这是一份高中数学竞赛标准教材15第十五章 复数【讲义】,共7页。学案主要包含了基础知识,方法与例题,基础训练题,高考水平训练题,联赛二试水平训练题等内容,欢迎下载使用。

    高中数学竞赛标准教材06第六章 三角函数【讲义】:

    这是一份高中数学竞赛标准教材06第六章 三角函数【讲义】,共10页。学案主要包含了基础知识,方法与例题,基础训练题,高考水平训练题,联赛一试水平训练题,联赛二试水平训练题等内容,欢迎下载使用。

    高中数学竞赛标准教材05第五章 数列【讲义】:

    这是一份高中数学竞赛标准教材05第五章 数列【讲义】,共7页。学案主要包含了基础知识,方法与例题,基础训练题,高考水平训练题,联赛一试水平训练题,联赛二试水平训练题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map