


2021-2023年高考物理真题选编:电磁学解答题(解析版)
展开
这是一份2021-2023年高考物理真题选编:电磁学解答题(解析版),共91页。试卷主要包含了解答题等内容,欢迎下载使用。
一、解答题
1.(2023·浙江·高考真题)如图1所示,刚性导体线框由长为L、质量均为m的两根竖杆,与长为的两轻质横杆组成,且。线框通有恒定电流,可以绕其中心竖直轴转动。以线框中心O为原点、转轴为z轴建立直角坐标系,在y轴上距离O为a处,固定放置一半径远小于a,面积为S、电阻为R的小圆环,其平面垂直于y轴。在外力作用下,通电线框绕转轴以角速度匀速转动,当线框平面与平面重合时为计时零点,圆环处的磁感应强度的y分量与时间的近似关系如图2所示,图中已知。
(1)求0到时间内,流过圆环横截面的电荷量q;
(2)沿y轴正方向看以逆时针为电流正方向,在时间内,求圆环中的电流与时间的关系;
(3)求圆环中电流的有效值;
(4)当撤去外力,线框将缓慢减速,经时间角速度减小量为,设线框与圆环的能量转换效率为k,求的值(当,有)。
【答案】(1);(2);(3);(4)
【详解】(1)由法拉第电磁感应定律
由闭合电路欧姆定律
由电流定义式
联立可得
(2)在时
在时
(3)从能量角度
解得
(4)由能量传递
化简可得
即
解得
2.(2023·浙江·高考真题)探究离子源发射速度大小和方向分布的原理如图所示。x轴上方存在垂直平面向外、磁感应强度大小为B的匀强磁场。x轴下方的分析器由两块相距为d、长度足够的平行金属薄板M和N组成,其中位于x轴的M板中心有一小孔C(孔径忽略不计),N板连接电流表后接地。位于坐标原点O的离子源能发射质量为m、电荷量为q的正离子,其速度方向与y轴夹角最大值为;且各个方向均有速度大小连续分布在和之间的离子射出。已知速度大小为、沿y轴正方向射出的离子经磁场偏转后恰好垂直x轴射入孔C。未能射入孔C的其它离子被分析器的接地外罩屏蔽(图中没有画出)。不计离子的重力及相互作用,不考虑离子间的碰撞。
(1)求孔C所处位置的坐标;
(2)求离子打在N板上区域的长度L;
(3)若在N与M板之间加载电压,调节其大小,求电流表示数刚为0时的电压;
(4)若将分析器沿着x轴平移,调节加载在N与M板之间的电压,求电流表示数刚为0时的电压与孔C位置坐标x之间关系式。
【答案】(1);(2);(3);(4)当时,
【详解】(1)速度大小为、沿y轴正方向射出的离子经磁场偏转后轨迹如图
由洛伦兹力提供向心力
解得半径
孔C所处位置的坐标
(2)速度大小为的离子进入磁场后,由洛伦兹力提供向心力
解得半径
若要能在C点入射,则由几何关系可得
解得
如图
由几何关系可得
(3)不管从何角度发射
由(2)可得
根据动力学公式可得
,
联立解得
(4)孔C位置坐标x
其中
联立可得
,
解得
在此范围内,和(3)相同,只与相关,可得
解得
根据动力学公式可得
,
解得
3.(2022·天津·高考真题)如图所示,M和N为平行金属板,质量为m,电荷量为q的带电粒子从M由静止开始被两板间的电场加速后,从N上的小孔穿出,以速度v由C点射入圆形匀强磁场区域,经D点穿出磁场,CD为圆形区域的直径。已知磁场的磁感应强度大小为B、方向垂直于纸面向外,粒子速度方向与磁场方向垂直,重力略不计。
(1)判断粒子的电性,并求M、N间的电压U;
(2)求粒子在磁场中做圆周运动的轨道半径r;
(3)若粒子的轨道半径与磁场区域的直径相等,求粒子在磁场中运动的时间t。
【答案】(1)正电,;(2);(3)
【详解】(1)带电粒子在磁场中运动,根据左手定则可知粒子带正电。粒子在电场中运动由动能定理可知
解得
(2)粒子在磁场中做匀速圆周运动,所受洛伦兹力提供向心力,有
解得
(3)设粒子运动轨道圆弧对应的圆心角为,如图
依题意粒子的轨道半径与磁场区域的直径相等,由几何关系,得
设粒子在磁场中做匀速圆周运动的周期为T,有
带电粒子在磁场中运动的时间
联立各式解得
4.(2022·天津·高考真题)直流电磁泵是利用安培力推动导电液体运动的一种设备,可用图1所示的模型讨论其原理,图2为图1的正视图。将两块相同的矩形导电平板竖直正对固定在长方体绝缘容器中,平板与容器等宽,两板间距为,容器中装有导电液体,平板底端与容器底部留有高度可忽略的空隙,导电液体仅能从空隙进入两板间。初始时两板间接有直流电源,电源极性如图所示。若想实现两板间液面上升,可在两板间加垂直于面的匀强磁场,磁感应强度的大小为,两板间液面上升时两板外的液面高度变化可忽略不计。已知导电液体的密度为、电阻率为,重力加速度为。
(1)试判断所加磁场的方向;
(2)求两板间液面稳定在初始液面高度2倍时的电压;
(3)假定平板与容器足够高,求电压满足什么条件时两板间液面能够持续上升。
【答案】(1)沿轴负方向;(2);(3)
【详解】(1)想实现两板间液面上升,导电液体需要受到向上的安培力,由图可知电流方向沿轴正方向,根据左手定则可知,所加磁场的方向沿轴负方向。
(2)设平板宽度为,两板间初始液面高度为,当液面稳定在高度时,两板间液体的电阻为,则有
当两板间所加电压为时,设流过导电液体的电流为,由欧姆定律可得
外加磁场磁感应强度大小为时,设液体所受安培力的大小为,则有
两板间液面稳定在高度时,设两板间高出板外液面的液体质量为,则有
两板间液体受到的安培力与两板间高出板外液面的液体重力平衡,则有
联立以上式子解得
(3)两板间液面持续上升前,设两板间液面的总高度为,采用(2)相同的分析方法可得
整理上式,得
若想实现两板间液面持续上升,电压应满足
即
5.(2022·福建·高考真题)如图(a),一倾角为的绝缘光滑斜面固定在水平地面上,其顶端与两根相距为L的水平光滑平行金属导轨相连;导轨处于一竖直向下的匀强磁场中,其末端装有挡板M、N.两根平行金属棒G、H垂直导轨放置,G的中心用一不可伸长绝缘细绳通过轻质定滑轮与斜面底端的物块A相连;初始时刻绳子处于拉紧状态并与G垂直,滑轮左侧细绳与斜面平行,右侧与水平面平行.从开始,H在水平向右拉力作用下向右运动;时,H与挡板M、N相碰后立即被锁定.G在后的速度一时间图线如图(b)所示,其中段为直线.已知:磁感应强度大小,,G、H和A的质量均为,G、H的电阻均为;导轨电阻、细绳与滑轮的摩擦力均忽略不计;H与挡板碰撞时间极短;整个运动过程A未与滑轮相碰,两金属棒始终与导轨垂直且接触良好:,,重力加速度大小取,图(b)中e为自然常数,.求:
(1)在时间段内,棒G的加速度大小和细绳对A的拉力大小;
(2)时,棒H上拉力的瞬时功率;
(3)在时间段内,棒G滑行的距离.
【答案】(1) ;;(2);(3)
【详解】(1)由图像可得在内,棒G做匀加速运动,其加速度为
依题意物块A的加速度也为,由牛顿第二定律可得
解得细绳受到拉力
(2)由法拉第电磁感应定律与闭合电路欧姆定律推导出“双棒”回路中的电流为
由牛顿运动定律和安培力公式有
由于在内棒G做匀加速运动,回路中电流恒定为,两棒速度差为
保持不变,这说明两棒加速度相同且均为a;
对棒H由牛顿第二定律可求得其受到水平向右拉力
由图像可知时,棒G的速度为
此刻棒H的速度为
其水平向右拉力的功率
.
(3)棒H停止后,回路中电流发生突变,棒G受到安培力大小和方向都发生变化,棒G是否还拉着物块A一起做减速运动需要通过计算判断,假设绳子立刻松弛无拉力,经过计算棒G加速度为
物块A加速度为
说明棒H停止后绳子松弛,物块A做加速度大小为的匀减速运动,棒G做加速度越来越小的减速运动;由动量定理、法拉第电磁感应定律和闭合电路欧姆定律可以求得,在内
棒G滑行的距离
这段时间内物块A速度始终大于棒G滑行速度,绳子始终松弛。
6.(2022·重庆·高考真题)某同学以金属戒指为研究对象,探究金属物品在变化磁场中的热效应。如图所示,戒指可视为周长为L、横截面积为S、电阻率为的单匝圆形线圈,放置在匀强磁场中,磁感应强度方向垂直于戒指平面。若磁感应强度大小在时间内从0均匀增加到,求:
(1)戒指中的感应电动势和电流;
(2)戒指中电流的热功率。
【答案】(1),;(2)
【详解】(1)设戒指的半径为,则有
磁感应强度大小在时间内从0均匀增加到,产生的感应电动势为
可得
戒指的电阻为
则戒指中的感应电流为
(2)戒指中电流的热功率为
7.(2022·北京·高考真题)如图所示,真空中平行金属板M、N之间距离为d,两板所加的电压为U。一质量为m、电荷量为q的带正电粒子从M板由静止释放。不计带电粒子的重力。
(1)求带电粒子所受的静电力的大小F;
(2)求带电粒子到达N板时的速度大小v;
(3)若在带电粒子运动距离时撤去所加电压,求该粒子从M板运动到N板经历的时间t。
【答案】(1);(2);(3)
【详解】(1)两极板间的场强
带电粒子所受的静电力
(2)带电粒子从静止开始运动到N板的过程,根据功能关系有
解得
(3)设带电粒子运动距离时的速度大小为v′,根据功能关系有
带电粒子在前距离做匀加速直线运动,后距离做匀速运动,设用时分别为t1、t2,有
,
则该粒子从M板运动到N板经历的时间
8.(2022·北京·高考真题)指南针是利用地磁场指示方向的装置,它的广泛使用促进了人们对地磁场的认识。现代科技可以实现对地磁场的精确测量。
(1)如图1所示,两同学把一根长约10m的电线两端用其他导线连接一个电压表,迅速摇动这根电线。若电线中间位置的速度约10m/s,电压表的最大示数约2mV。粗略估算该处地磁场磁感应强度的大小B地;
(2)如图2所示,一矩形金属薄片,其长为a,宽为b,厚为c。大小为I的恒定电流从电极P流入、从电极Q流出,当外加与薄片垂直的匀强磁场时,M、N两电极间产生的电压为U。已知薄片单位体积中导电的电子数为n,电子的电荷量为e。求磁感应强度的大小B;
(3)假定(2)中的装置足够灵敏,可用来测量北京地区地磁场磁感应强度的大小和方向,请说明测量的思路。
【答案】(1)数量级为10-5T;(2);(3)见解析
【详解】(1)由E = BLv可估算得该处地磁场磁感应强度B地的大小的数量级为10-5T。
(2)设导电电子定向移动的速率为v,t时间内通过横截面的电量为q,
有
导电电子定向移动过程中,在方向受到的电场力与洛伦兹力平衡,有
得
(3)如答图3建立三维直角坐标系Oxyz
设地磁场磁感应强度在三个方向的分量为Bx、By、Bz。把金属薄片置于xOy平面内,M、N两极间产生电压Uz仅取决于Bz。由(2)得
由Uz的正负(M、N两极电势的高低)和电流I的方向可以确定Bz的方向。
同理,把金属薄片置于xOz平面内,可得By的大小和方向;把金属薄片置于yOz平面内,可得Bx的大小和方向,则地磁场的磁感应强度的大小为
根据Bx、By、Bz的大小和方向可确定此处地磁场的磁感应强度的方向。
9.(2022·江苏·高考真题)利用云室可以知道带电粒子的性质,如图所示,云室中存在磁感应强度大小为B的匀强磁场,一个质量为m、速度为v的电中性粒子在A点分裂成带等量异号电荷的粒子a和b,a、b在磁场中的径迹是两条相切的圆弧,相同时间内的径迹长度之比,半径之比,不计重力及粒子间的相互作用力,求:
(1)粒子a、b的质量之比;
(2)粒子a的动量大小。
【答案】(1);(2)
【详解】(1)分裂后带电粒子在磁场中偏转做匀速圆周运动,洛伦兹力提供向心力,则有
解得
由题干知半径之比,故
因为相同时间内的径迹长度之比,则分裂后粒子在磁场中的速度为
联立解得
(2)中性粒子在A点分裂成带等量异号电荷的粒子a和b,分裂过程中,没有外力作用,动量守恒,根据动量守恒定律
因为分裂后动量关系为,联立解得
10.(2022·江苏·高考真题)某装置用电场控制带电粒子运动,工作原理如图所示,矩形区域内存在多层紧邻的匀强电场,每层的高度均为d,电场强度大小均为E,方向沿竖直方向交替变化,边长为,边长为,质量为m、电荷量为的粒子流从装置左端中点射入电场,粒子初动能为,入射角为,在纸面内运动,不计重力及粒子间的相互作用力。
(1)当时,若粒子能从边射出,求该粒子通过电场的时间t;
(2)当时,若粒子从边射出电场时与轴线的距离小于d,求入射角的范围;
(3)当,粒子在为范围内均匀射入电场,求从边出射的粒子与入射粒子的数量之比。
【答案】(1);(2)或;(3)
【详解】(1)电场方向竖直向上,粒子所受电场力在竖直方向上,粒子在水平方向上做匀速直线运动,速度分解如图所示
粒子在水平方向的速度为
根据可知
解得
(2)粒子进入电场时的初动能
粒子进入电场沿电场方向做减速运动,由牛顿第二定律可得
粒子从边射出电场时与轴线的距离小于d,则要求
解得
所以入射角的范围为
或
(3)设粒子入射角为时,粒子恰好从D点射出,由于粒子进入电场时,在水平方向做匀速直线运动,在竖直方向反复做加速相同的减速运动,加速运动。粒子的速度
运动时间为
粒子在沿电场方向,反复做加速相同的减速运动,加速运动,则
则
则粒子在分层电场中运动时间相等,设为,则
且
代入数据化简可得
即
解得
(舍去)或
解得
则从边出射的粒子与入射粒子的数量之比
11.(2022·海南·高考真题)光滑的水平长直轨道放在匀强磁场中,轨道宽,一导体棒长也为,质量,电阻,它与导轨接触良好。当开关与a接通时,电源可提供恒定的电流,电流方向可根据需要进行改变,开关与b接通时,电阻,若开关的切换与电流的换向均可在瞬间完成,求:
①当棒中电流由M流向N时,棒的加速度的大小和方向是怎样的;
②当开关始终接a,要想在最短时间内使棒向左移动而静止,则棒的最大速度是多少;
③要想棒在最短时间内向左移动而静止,则棒中产生的焦耳热是多少。
【答案】①,方向向右;②;③
【详解】①当电流从M流向N时,由左手定则可判断安培力向右,故加速度方向向右。
根据牛顿第二定律有
代入数据可得
②开关始终接a时,电流N到M,经过时间后电流变为M到N,再经时间速度减为零,前 s,则有
后s,则有
根据
联立解得
③先接a一段时间,电流由N到M,再接到b端一段时间,再接到a端一段时间,电流由M到N,最后接到b静止
第一段,则有
第二段,则有由动量定理
且
则有
第二段末的加速度与第三段相同,则第三段,
又
解得
v'=1m/s
故
12.(2022·辽宁·高考真题)如图所示,光滑水平面和竖直面内的光滑圆弧导轨在B点平滑连接,导轨半径为R。质量为m的带正电小球将轻质弹簧压缩至A点后由静止释放,脱离弹簧后经过B点时的速度大小为,之后沿轨道运动。以O为坐标原点建立直角坐标系,在区域有方向与x轴夹角为的匀强电场,进入电场后小球受到的电场力大小为。小球在运动过程中电荷量保持不变,重力加速度为g。求:
(1)弹簧压缩至A点时的弹性势能;
(2)小球经过O点时的速度大小;
(3)小球过O点后运动的轨迹方程。
【答案】(1);(2);(3)
【详解】(1)小球从A到B,根据能量守恒定律得
(2)小球从B到O,根据动能定理有
解得
(3)小球运动至O点时速度竖直向上,受电场力和重力作用,将电场力分解到x轴和y轴,则x轴方向有
竖直方向有
解得
,
说明小球从O点开始以后的运动为x轴方向做初速度为零的匀加速直线运动,y轴方向做匀速直线运动,即做类平抛运动,则有
,
联立解得小球过O点后运动的轨迹方程
13.(2022·辽宁·高考真题)如图所示,两平行光滑长直金属导轨水平放置,间距为L。区域有匀强磁场,磁感应强度大小为B,方向竖直向上。初始时刻,磁场外的细金属杆M以初速度向右运动,磁场内的细金属杆N处于静止状态。两金属杆与导轨接触良好且运动过程中始终与导轨垂直。两杆的质量均为m,在导轨间的电阻均为R,感应电流产生的磁场及导轨的电阻忽略不计。
(1)求M刚进入磁场时受到的安培力F的大小和方向;
(2)若两杆在磁场内未相撞且N出磁场时的速度为,求:①N在磁场内运动过程中通过回路的电荷量q;②初始时刻N到的最小距离x;
(3)初始时刻,若N到的距离与第(2)问初始时刻的相同、到的距离为,求M出磁场后不与N相撞条件下k的取值范围。
【答案】(1),方向水平向左;(2)①,②;(3)
【详解】(1)细金属杆M以初速度向右刚进入磁场时,产生的动生电动势为
电流方向为,电流的大小为
则所受的安培力大小为
安培力的方向由左手定则可知水平向左;
(2)①金属杆N在磁场内运动过程中,由动量定理有
且
联立解得通过回路的电荷量为
②设两杆在磁场中相对靠近的位移为,有
整理可得
联立可得
若两杆在磁场内刚好相撞,N到的最小距离为
(3)两杆出磁场后在平行光滑长直金属导轨上运动,若N到的距离与第(2)问初始时刻的相同、到的距离为,则N到cd边的速度大小恒为,根据动量守恒定律可知
解得N出磁场时,M的速度大小为
由题意可知,此时M到cd边的距离为
若要保证M出磁场后不与N相撞,则有两种临界情况:
①M减速出磁场,出磁场的速度刚好等于N的速度,一定不与N相撞,对M根据动量定理有
联立解得
②M运动到cd边时,恰好减速到零,则对M由动量定理有
同理解得
综上所述,M出磁场后不与N相撞条件下k的取值范围为
14.(2022·湖北·统考高考真题)如图所示,高度足够的匀强磁场区域下边界水平、左右边界竖直,磁场方向垂直于纸面向里。正方形单匝线框abcd的边长L = 0.2m、回路电阻R = 1.6 × 10 - 3Ω、质量m = 0.2kg。线框平面与磁场方向垂直,线框的ad边与磁场左边界平齐,ab边与磁场下边界的距离也为L。现对线框施加与水平向右方向成θ = 45°角、大小为的恒力F,使其在图示竖直平面内由静止开始运动。从ab边进入磁场开始,在竖直方向线框做匀速运动;dc边进入磁场时,bc边恰好到达磁场右边界。重力加速度大小取g = 10m/s2,求:
(1)ab边进入磁场前,线框在水平方向和竖直方向的加速度大小;
(2)磁场的磁感应强度大小和线框进入磁场的整个过程中回路产生的焦耳热;
(3)磁场区域的水平宽度。
【答案】(1)ax = 20m/s2,ay = 10m/s2;(2)B = 0.2T,Q = 0.4J;(3)X = 1.1m
【详解】(1)ab边进入磁场前,对线框进行受力分析,在水平方向有
max = Fcsθ
代入数据有
ax = 20m/s2
在竖直方向有
may = Fsinθ - mg
代入数据有
ay = 10m/s2
(2)ab边进入磁场开始,ab边在竖直方向切割磁感线;ad边和bc边的上部分也开始进入磁场,且在水平方向切割磁感线。但ad和bc边的上部分产生的感应电动势相互抵消,则整个回路的电源为ab,根据右手定则可知回路的电流为adcba,则ab边进入磁场开始,ab边受到的安培力竖直向下,ad边的上部分受到的安培力水平向右,bc边的上部分受到的安培力水平向左,则ad边和bc边的上部分受到的安培力相互抵消,故线框abcd受到的安培力的合力为ab边受到的竖直向下的安培力。由题知,线框从ab边进入磁场开始,在竖直方向线框做匀速运动,有
Fsinθ - mg - BIL = 0
E = BLvy
vy2 = 2ayL
联立有
B = 0.2T
由题知,从ab边进入磁场开始,在竖直方向线框做匀速运动;dc边进入磁场时,bc边恰好到达磁场右边界。则线框进入磁场的整个过程中,线框受到的安培力为恒力,则有
Q = W安 = BILy
y = L
Fsinθ - mg = BIL
联立解得
Q = 0.4J
(3)线框从开始运动到进入磁场的整个过程中所用的时间为
vy = ayt1
L = vyt2
t = t1 + t2
联立解得
t = 0.3s
由(2)分析可知线框在水平方向一直做匀加速直线运动,则在水平方向有
则磁场区域的水平宽度
X = x + L = 1.1m
15.(2022·浙江·统考高考真题)离子速度分析器截面图如图所示。半径为R的空心转筒P,可绕过O点、垂直xOy平面(纸面)的中心轴逆时针匀速转动(角速度大小可调),其上有一小孔S。整个转筒内部存在方向垂直纸面向里的匀强磁场。转筒下方有一与其共轴的半圆柱面探测板Q,板Q与y轴交于A点。离子源M能沿着x轴射出质量为m、电荷量为 – q(q > 0)、速度大小不同的离子,其中速度大小为v0的离子进入转筒,经磁场偏转后恰好沿y轴负方向离开磁场。落在接地的筒壁或探测板上的离子被吸收且失去所带电荷,不计离子的重力和离子间的相互作用。
(1)①求磁感应强度B的大小;
②若速度大小为v0的离子能打在板Q的A处,求转筒P角速度ω的大小;
(2)较长时间后,转筒P每转一周有N个离子打在板Q的C处,OC与x轴负方向的夹角为θ,求转筒转动一周的时间内,C处受到平均冲力F的大小;
(3)若转筒P的角速度小于,且A处探测到离子,求板Q上能探测到离子的其他θ′的值(θ′为探测点位置和O点连线与x轴负方向的夹角)。
【答案】(1)①,②,k = 0,1,2,3…;(2),n = 0,1,2,…;(3),,
【详解】(1)①离子在磁场中做圆周运动有
则
②离子在磁场中的运动时间
转筒的转动角度
,k = 0,1,2,3…
(2)设速度大小为v的离子在磁场中圆周运动半径为,有
离子在磁场中的运动时间
转筒的转动角度
ω′t′ = 2nπ + θ
转筒的转动角速度
,n = 0,1,2,…
动量定理
,n = 0,1,2,…
(3)转筒的转动角速度
其中
k = 1,,n = 0,2或者
可得
,,
16.(2022·浙江·统考高考真题)舰载机电磁弹射是现在航母最先进的弹射技术,我国在这一领域已达到世界先进水平。某兴趣小组开展电磁弹射系统的设计研究,如图1所示,用于推动模型飞机的动子(图中未画出)与线圈绝缘并固定,线圈带动动子,可在水平导轨上无摩擦滑动。线圈位于导轨间的辐向磁场中,其所在处的磁感应强度大小均为B。开关S与1接通,恒流源与线圈连接,动子从静止开始推动飞机加速,飞机达到起飞速度时与动子脱离;此时S掷向2接通定值电阻R0,同时施加回撤力F,在F和磁场力作用下,动子恰好返回初始位置停下。若动子从静止开始至返回过程的v-t图如图2所示,在t1至t3时间内F=(800-10v)N,t3时撤去F。已知起飞速度v1=80m/s,t1=1.5s,线圈匝数n=100匝,每匝周长l=1m,飞机的质量M=10kg,动子和线圈的总质量m=5kg,R0=9.5Ω,B=0.1T,不计空气阻力和飞机起飞对动子运动速度的影响,求
(1)恒流源的电流I;
(2)线圈电阻R;
(3)时刻t3。
【答案】(1)80A;(2);(3)
【详解】(1)由题意可知接通恒流源时安培力
动子和线圈在0~t1时间段内做匀加速直线运动,运动的加速度为
根据牛顿第二定律有
代入数据联立解得
(2)当S掷向2接通定值电阻R0时,感应电流为
此时安培力为
所以此时根据牛顿第二定律有
由图可知在至期间加速度恒定,则有
解得
,
(3)根据图像可知
故;在0~t2时间段内的位移
而根据法拉第电磁感应定律有
电荷量的定义式
可得
从t3时刻到最后返回初始位置停下的时间段内通过回路的电荷量,根据动量定理有
联立可得
解得
17.(2022·广东·高考真题)密立根通过观测油滴的运动规律证明了电荷的量子性,因此获得了1923年的诺贝尔奖。图是密立根油滴实验的原理示意图,两个水平放置、相距为d的足够大金属极板,上极板中央有一小孔。通过小孔喷入一些小油滴,由于碰撞或摩擦,部分油滴带上了电荷。有两个质量均为、位于同一竖直线上的球形小油滴A和B,在时间t内都匀速下落了距离。此时给两极板加上电压U(上极板接正极),A继续以原速度下落,B经过一段时间后向上匀速运动。B在匀速运动时间t内上升了距离,随后与A合并,形成一个球形新油滴,继续在两极板间运动直至匀速。已知球形油滴受到的空气阻力大小为,其中k为比例系数,m为油滴质量,v为油滴运动速率,不计空气浮力,重力加速度为g。求:
(1)比例系数k;
(2)油滴A、B的带电量和电性;B上升距离电势能的变化量;
(3)新油滴匀速运动速度的大小和方向。
【答案】(1);(2)油滴A不带电,油滴B带负电,电荷量,电势能的变化量;(3)见解析
【详解】(1)未加电压时,油滴匀速时的速度大小
匀速时
又
联立可得
(2)加电压后,油滴A的速度不变,可知油滴A不带电,油滴B最后速度方向向上,可知油滴B所受电场力向上,极板间电场强度向下,可知油滴B带负电,油滴B向上匀速运动时,速度大小为
根据平衡条件可得
解得
根据
又
联立解得
(3)油滴B与油滴A合并后,新油滴的质量为,新油滴所受电场力
若,即
可知
新油滴速度方向向上,设向上为正方向,根据动量守恒定律
可得
新油滴向上加速,达到平衡时
解得速度大小为
速度方向向上;
若,即
可知
设向下为正方向,根据动量守恒定律
可知
新油滴向下加速,达到平衡时
解得速度大小为
速度方向向下。
18.(2022·河北·统考高考真题)两块面积和间距均足够大的金属板水平放置,如图1所示,金属板与可调电源相连形成电场,方向沿y轴正方向。在两板之间施加磁场,方向垂直平面向外。电场强度和磁感应强度随时间的变化规律如图2所示。板间O点放置一粒子源,可连续释放质量为m、电荷量为、初速度为零的粒子,不计重力及粒子间的相互作用,图中物理量均为已知量。求:
(1)时刻释放的粒子,在时刻的位置坐标;
(2)在时间内,静电力对时刻释放的粒子所做的功;
(3)在点放置一粒接收器,在时间内什么时刻释放的粒子在电场存在期间被捕获。
【答案】(1);(2);(3),
【详解】(1)在时间内,电场强度为,带电粒子在电场中加速度,根据动量定理可知
解得粒子在时刻的速度大小为
方向竖直向上,粒子竖直向上运动的距离
在时间内,根据粒子在磁场运动的周期可知粒子偏转,速度反向,根据可知粒子水平向右运动的距离为
粒子运动轨迹如图
所以粒子在时刻粒子的位置坐标为,即;
(2)在时间内,电场强度为,粒子受到的电场力竖直向上,在竖直方向
解得时刻粒子的速度
方向竖直向上,粒子在竖直方向上运动的距离为
在时间内,粒子在水平方向运动的距离为
此时粒子速度方向向下,大小为,在时间内,电场强度为,竖直方向
解得粒子在时刻的速度
粒子在竖直方向运动的距离
粒子运动的轨迹如图
在时间内,静电力对粒子的做功大小为
电场力做正功;
(3)若粒子在磁场中加速两个半圆恰好能够到达点,则释放的位置一定在时间内,粒子加速度时间为,在竖直方向上
在时间内粒子在水平方向运动的距离为
在时间内,在竖直方向
在时间内,粒子在水平方向运动的距离为
接收器的位置为,根据距离的关系可知
解得
此时粒子已经到达点上方,粒子竖直方向减速至用时,则
竖直方向需要满足
解得在一个电场加速周期之内,所以成立,所以粒子释放的时刻为中间时刻;
若粒子经过一个半圆到达点,则粒子在时间内释放不可能,如果在时间内释放,经过磁场偏转一次的最大横向距离,即直径,也无法到达点,所以考虑在时间内释放,假设粒子加速的时间为,在竖直方向上
之后粒子在时间内转动半轴,横向移动距离直接到达点的横坐标,即
解得
接下来在过程中粒子在竖直方向减速为的过程中
粒子要在点被吸收,需要满足
代入验证可知在一个周期之内,说明情况成立,所以粒子释放时刻为。
19.(2022·湖南·统考高考真题)如图,两个定值电阻的阻值分别为和,直流电源的内阻不计,平行板电容器两极板水平放置,板间距离为,板长为,极板间存在方向水平向里的匀强磁场。质量为、带电量为的小球以初速度沿水平方向从电容器下板左侧边缘点进入电容器,做匀速圆周运动,恰从电容器上板右侧边缘离开电容器。此过程中,小球未与极板发生碰撞,重力加速度大小为,忽略空气阻力。
(1)求直流电源的电动势;
(2)求两极板间磁场的磁感应强度;
(3)在图中虚线的右侧设计一匀强电场,使小球离开电容器后沿直线运动,求电场强度的最小值。
【答案】(1);(2);(3)
【详解】(1)小球在电磁场中做匀速圆周运动,则电场力与重力平衡,可得
两端的电压
根据欧姆定律得
联立解得
(2)如图所示
设粒子在电磁场中做圆周运动的半径为,根据几何关系
解得
根据
解得
(3)由几何关系可知,射出磁场时,小球速度方向与水平方向夹角为,要使小球做直线运动,当小球所受电场力与小球重力在垂直小球速度方向的分力相等时,电场力最小,电场强度最小,可得
解得
20.(2022·山东·统考高考真题)中国“人造太阳”在核聚变实验方面取得新突破,该装置中用电磁场约束和加速高能离子,其部分电磁场简化模型如图所示,在三维坐标系中,空间内充满匀强磁场I,磁感应强度大小为B,方向沿x轴正方向;,的空间内充满匀强磁场II,磁感应强度大小为,方向平行于平面,与x轴正方向夹角为;,的空间内充满沿y轴负方向的匀强电场。质量为m、带电量为的离子甲,从平面第三象限内距轴为的点以一定速度出射,速度方向与轴正方向夹角为,在平面内运动一段时间后,经坐标原点沿轴正方向进入磁场I。不计离子重力。
(1)当离子甲从点出射速度为时,求电场强度的大小;
(2)若使离子甲进入磁场后始终在磁场中运动,求进入磁场时的最大速度;
(3)离子甲以的速度从点沿轴正方向第一次穿过面进入磁场I,求第四次穿过平面的位置坐标(用d表示);
(4)当离子甲以的速度从点进入磁场I时,质量为、带电量为的离子乙,也从点沿轴正方向以相同的动能同时进入磁场I,求两离子进入磁场后,到达它们运动轨迹第一个交点的时间差(忽略离子间相互作用)。
【答案】(1);(2);(3)(d,d,);(4)
【详解】(1)如图所示
将离子甲从点出射速度为分解到沿轴方向和轴方向,离子受到的电场力沿轴负方向,可知离子沿轴方向做匀速直线运动,沿轴方向做匀减速直线运动,从到的过程,有
联立解得
(2)离子从坐标原点沿轴正方向进入磁场I中,在磁场I中做匀速圆周运动,经过磁场I偏转后从轴进入磁场II中,继续做匀速圆周运动,如图所示
由洛伦兹力提供向心力可得
,
可得
为了使离子在磁场中运动,则离子磁场I运动时,不能从磁场I上方穿出。在磁场II运动时,不能xOz平面穿出,则离子在磁场用运动的轨迹半径需满足
,
联立可得
要使离子甲进入磁场后始终在磁场中运动,进入磁场时的最大速度为;
(3)离子甲以的速度从点沿z轴正方向第一次穿过面进入磁场I,离子在磁场I中的轨迹半径为
离子在磁场II中的轨迹半径为
离子从点第一次穿过到第四次穿过平面的运动情景,如图所示
离子第四次穿过平面的坐标为
离子第四次穿过平面的坐标为
故离子第四次穿过平面的位置坐标为(d,d,)。
(4)设离子乙的速度为,根据离子甲、乙动能相同,可得
可得
离子甲、离子乙在磁场I中的轨迹半径分别为
,
离子甲、离子乙在磁场II中的轨迹半径分别为
,
根据几何关系可知离子甲、乙运动轨迹第一个交点在离子乙第一次穿过x轴的位置,如图所示
从点进入磁场到第一个交点的过程,有
可得离子甲、乙到达它们运动轨迹第一个交点的时间差为
21.(2022·山东·统考高考真题)某粮库使用额定电压,内阻的电动机运粮。如图所示,配重和电动机连接小车的缆绳均平行于斜坡,装满粮食的小车以速度沿斜坡匀速上行,此时电流。关闭电动机后,小车又沿斜坡上行路程L到达卸粮点时,速度恰好为零。卸粮后,给小车一个向下的初速度,小车沿斜坡刚好匀速下行。已知小车质量,车上粮食质量,配重质量,取重力加速度,小车运动时受到的摩擦阻力与车及车上粮食总重力成正比,比例系数为k,配重始终未接触地面,不计电动机自身机械摩擦损耗及缆绳质量。求:
(1)比例系数k值;
(2)上行路程L值。
【答案】(1);(2)
【详解】(1)设电动机的牵引绳张力为,电动机连接小车的缆绳匀速上行,由能量守恒定律有
解得
小车和配重一起匀速,设绳的张力为,对配重有
设斜面倾角为,对小车匀速有
而卸粮后给小车一个向下的初速度,小车沿斜坡刚好匀速下行,有
联立各式解得
,
(2)关闭发动机后小车和配重一起做匀减速直线运动,设加速度为,对系统由牛顿第二定律有
可得
由运动学公式可知
解得
22.(2022·全国·统考高考真题)光点式检流计是一种可以测量微小电流的仪器,其简化的工作原理示意图如图所示。图中A为轻质绝缘弹簧,C为位于纸面上的线圈,虚线框内有与纸面垂直的匀强磁场;M为置于平台上的轻质小平面反射镜,轻质刚性细杆D的一端与M固连且与镜面垂直、另一端与弹簧下端相连,为圆弧形的、带有均匀刻度的透明读数条,的圆心位于M的中心。使用前需调零:使线圈内没有电流通过时,M竖直且与纸面垂直;入射细光束沿水平方向经上的O点射到M上后沿原路反射。线圈通入电流后弹簧长度改变,使M发生倾斜,入射光束在M上的入射点仍近似处于的圆心,通过读取反射光射到上的位置,可以测得电流的大小。已知弹簧的劲度系数为k,磁场磁感应强度大小为B,线圈C的匝数为N。沿水平方向的长度为l,细杆D的长度为d,圆弧的半径为r﹐,d远大于弹簧长度改变量的绝对值。
(1)若在线圈中通入的微小电流为I,求平衡后弹簧长度改变量的绝对值及上反射光点与O点间的弧长s;
(2)某同学用此装置测一微小电流,测量前未调零,将电流通入线圈后,上反射光点出现在O点上方,与O点间的弧长为、保持其它条件不变,只将该电流反向接入,则反射光点出现在О点下方,与O点间的弧长为。求待测电流的大小。
【答案】(1),;(2)
【详解】(1)由题意当线圈中通入微小电流I时,线圈中的安培力为
F = NBIl
根据胡克定律有
F = NBIl = k│x│
如图所示
设此时细杆转过的弧度为θ,则可知反射光线转过的弧度为2θ,又因为
d >> x,r >> d
则
sinθ ≈ θ,sin2θ ≈ 2θ
所以有
x = dθ
s = r2θ
联立可得
(2)因为测量前未调零,设没有通电流时偏移的弧长为s′,当初始时反射光点在O点上方,通电流I′后根据前面的结论可知有
当电流反向后有
联立可得
同理可得初始时反射光点在O点下方结果也相同,故待测电流的大小为
23.(2022·全国·统考高考真题)如图,一不可伸长的细绳的上端固定,下端系在边长为的正方形金属框的一个顶点上。金属框的一条对角线水平,其下方有方向垂直于金属框所在平面的匀强磁场。已知构成金属框的导线单位长度的阻值为;在到时间内,磁感应强度大小随时间t的变化关系为。求:
(1)时金属框所受安培力的大小;
(2)在到时间内金属框产生的焦耳热。
【答案】(1);(2)0.016J
【详解】(1)金属框的总电阻为
金属框中产生的感应电动势为
金属框中的电流为
t=2.0s时磁感应强度为
金属框处于磁场中的有效长度为
此时金属框所受安培力大小为
(2)内金属框产生的焦耳热为
24.(2022·浙江·统考高考真题)如图所示,水平固定一半径r=0.2m的金属圆环,长均为r,电阻均为R0的两金属棒沿直径放置,其中一端与圆环接触良好,另一端固定在过圆心的导电竖直转轴OO′上,并随轴以角速度=600rad/s匀速转动,圆环内左半圆均存在磁感应强度大小为B1的匀强磁场。圆环边缘、与转轴良好接触的电刷分别与间距l1的水平放置的平行金属轨道相连,轨道间接有电容C=0.09F的电容器,通过单刀双掷开关S可分别与接线柱1、2相连。电容器左侧宽度也为l1、长度为l2、磁感应强度大小为B2的匀强磁场区域。在磁场区域内靠近左侧边缘处垂直轨道放置金属棒ab,磁场区域外有间距也为l1的绝缘轨道与金属轨道平滑连接,在绝缘轨道的水平段上放置“[”形金属框fcde。棒ab长度和“[”形框的宽度也均为l1、质量均为m=0.01kg,de与cf长度均为l3=0.08m,已知l1=0.25m,l2=0.068m,B1=B2=1T、方向均为竖直向上;棒ab和“[”形框的cd边的电阻均为R=0.1,除已给电阻外其他电阻不计,轨道均光滑,棒ab与轨道接触良好且运动过程中始终与轨道垂直。开始时开关S和接线柱1接通,待电容器充电完毕后,将S从1拨到2,电容器放电,棒ab被弹出磁场后与“[”形框粘在一起形成闭合框abcd,此时将S与2断开,已知框abcd在倾斜轨道上重心上升0.2m后返回进入磁场。
(1)求电容器充电完毕后所带的电荷量Q,哪个极板(M或N)带正电?
(2)求电容器释放的电荷量;
(3)求框abcd进入磁场后,ab边与磁场区域左边界的最大距离x。
【答案】(1)0.54C;M板;(2)0.16C;(3)0.14m
【详解】(1)开关S和接线柱1接通,电容器充电充电过程,对绕转轴OO′转动的棒由右手定则可知其动生电源的电流沿径向向外,即边缘为电源正极,圆心为负极,则M板充正电;
根据法拉第电磁感应定律可知
则电容器的电量为
(2)电容器放电过程有
棒ab被弹出磁场后与“[”形框粘在一起的过程有
棒的上滑过程有
联立解得
(3)设导体框在磁场中减速滑行的总路程为,由动量定理
可得
匀速运动距离为
则
25.(2022·浙江·统考高考真题)如图为研究光电效应的装置示意图,该装置可用于分析光子的信息。在xOy平面(纸面)内,垂直纸面的金属薄板M、N与y轴平行放置,板N中间有一小孔O。有一由x轴、y轴和以O为圆心、圆心角为90°的半径不同的两条圆弧所围的区域Ⅰ,整个区域Ⅰ内存在大小可调、方向垂直纸面向里的匀强电场和磁感应强度大小恒为B1、磁感线与圆弧平行且逆时针方向的磁场。区域Ⅰ右侧还有一左边界与y轴平行且相距为l、下边界与x轴重合的匀强磁场区域Ⅱ,其宽度为a,长度足够长,其中的磁场方向垂直纸面向里,磁感应强度大小可调。光电子从板M逸出后经极板间电压U加速(板间电场视为匀强电场),调节区域Ⅰ的电场强度和区域Ⅱ的磁感应强度,使电子恰好打在坐标为(a+2l,0)的点上,被置于该处的探测器接收。已知电子质量为m、电荷量为e,板M的逸出功为W0,普朗克常量为h。忽略电子的重力及电子间的作用力。当频率为ν的光照射板M时有光电子逸出,
(1)求逸出光电子的最大初动能Ekm,并求光电子从O点射入区域Ⅰ时的速度v0的大小范围;
(2)若区域Ⅰ的电场强度大小,区域Ⅱ的磁感应强度大小,求被探测到的电子刚从板M逸出时速度vM的大小及与x轴的夹角;
(3)为了使从O点以各种大小和方向的速度射向区域Ⅰ的电子都能被探测到,需要调节区域Ⅰ的电场强度E和区域Ⅱ的磁感应强度B2,求E的最大值和B2的最大值。
【答案】(1);;(2);;(3);
【详解】(1)光电效应方程,逸出光电子的最大初动能
(2)速度选择器
如图所示,几何关系
(3)由上述表达式可得
由
而v0sinθ等于光电子在板逸出时沿y轴的分速度,则有
即
联立可得B2的最大值
26.(2021·重庆·高考真题)如图1所示的竖直平面内,在原点O有一粒子源,可沿x轴正方向发射速度不同、比荷均为的带正电的粒子。在的区域仅有垂直于平面向内的匀强磁场;的区域仅有如图2所示的电场,时间内和时刻后的匀强电场大小相等,方向相反(时间内电场方向竖直向下),时间内电场强度为零。在磁场左边界直线上的某点,固定一粒子收集器(图中未画出)。0时刻发射的A粒子在时刻经过左边界进入磁场,最终被收集器收集;B粒子在时刻以与A粒子相同的发射速度发射,第一次经过磁场左边界的位置坐标为;C粒子在时刻发射,其发射速度是A粒子发射速度的,不经过磁场能被收集器收集。忽略粒子间相互作用力和粒子重力,不考虑边界效应。
(1)求电场强度E的大小;
(2)求磁感应强度B的大小;
(3)设时刻发射的粒子能被收集器收集,求其有可能的发射速度大小。
【答案】(1);(2);(3) 、、
【详解】(1)由粒子类平抛
粒子先类平抛后匀直,
可得
或
解得
(2)对粒子类平抛
得
A进入磁场时速度与轴正方向夹角为,则
得
即
A粒子做匀圆,速度为半径为,有
由
可得
对粒子类平抛运动的时间为
可得
由几何关系
得
联立解得
(3)①设直接类平抛过D点,即
解得
②设先类平抛后匀圆过D点,刚进入磁场时与轴夹角为、偏移的距离为,
则
整理得
令,则上式变成
观察可得是其中一解,所以上方程等价于
可得其解是
或
(另一解不符合题意,舍去)
则有
或
综上所述,能够被粒子收集器收集的粒子速度有:、、。
27.(2021·福建·统考高考真题)如图(a),同一竖直平面内A、B、M、N四点距O点的距离均为,O为水平连线的中点,M、N在连线的中垂线上。A、B两点分别固定有一点电荷,电荷量均为Q()。以O为原点,竖直向下为正方向建立x轴。若取无穷远处为电势零点,则上的电势随位置x的变化关系如图(b)所示。一电荷量为Q()的小球以一定初动能从M点竖直下落,一段时间后经过N点,其在段运动的加速度大小a随位置x的变化关系如图(c)所示。图中g为重力加速度大小,k为静电力常量。
(1)求小球在M点所受电场力大小。
(2)当小球运动到N点时,恰与一沿x轴负方向运动的不带电绝缘小球发生弹性碰撞。已知与的质量相等,碰撞前、后的动能均为,碰撞时间极短。求碰撞前的动量大小。
(3)现将固定在N点,为保证能运动到N点与之相碰,从M点下落时的初动能须满足什么条件?
【答案】(1);(2);(3)
【详解】(1)设A到M点的距离为,A点的电荷对小球的库仑力大小为,由库仑定律有
①
设小球在点所受电场力大小为,由力的合成有
②
联立①②式,由几何关系并代入数据得
③
(2)设O点下方处为点,与的距离为,小球在处所受的库仑力大小为,由库仑定律和力的合成有
④
式中
设小球的质量为,小球在点的加速度大小为,由牛顿第二定律有
⑤
由图(c)可知,式中
联立④⑤式并代入数据得
⑥
设的质量为,碰撞前、后的速度分别为,,碰撞前、后的速度分别为,,取竖直向下为正方向。由动量守恒定律和能量守恒定律有
⑦
⑧
设小球S2碰撞前的动量为,由动量的定义有
⑨
依题意有
联立⑥⑦⑧⑨式并代入数据,得
⑩
即碰撞前的动量大小为。
(3)设O点上方处为D点。根据图(c)和对称性可知,在D点所受的电场力大小等于小球的重力大小,方向竖直向上,在此处加速度为0;在D点上方做减速运动,在D点下方做加速运动,为保证能运动到N点与相碰,运动到D点时的速度必须大于零。
设M点与D点电势差为,由电势差定义有
⑪
设小球初动能为,运动到D点的动能为,由动能定理有
⑫
⑬
由对称性,D点与C点电势相等,M点与N点电势相等,依据图(b)所给数据,并联立⑥⑪⑫⑬式可得
⑭
28.(2021·江苏·高考真题)贯彻新发展理念,我国风力发电发展迅猛,2020年我国风力发电量高达4000亿千瓦时。某种风力发电机的原理如图所示,发电机的线圈固定,磁体在叶片驱动下绕线圈对称轴转动,已知磁体间的磁场为匀强磁场,磁感应强度的大小为,线圈的匝数为100、面积为,电阻为,若磁体转动的角速度为,线圈中产生的感应电流为。求:
(1)线圈中感应电动势的有效值E;
(2)线圈的输出功率P。
【答案】(1);(2)
【详解】(1)电动势的最大值
有效值
解得
带入数据得
(2)输出电压
输出功率
解得
代入数据得
29.(2021·江苏·高考真题)如图1所示,回旋加速器的圆形匀强磁场区域以O点为圆心,磁感应强度大小为B,加速电压的大小为U、质量为m、电荷量为q的粒子从O附近飘入加速电场,多次加速后粒子经过P点绕O做圆周运动,半径为R,粒子在电场中的加速时间可以忽略。为将粒子引出磁场,在P位置安装一个“静电偏转器”,如图2所示,偏转器的两极板M和N厚度均匀,构成的圆弧形狭缝圆心为Q、圆心角为,当M、N间加有电压时,狭缝中产生电场强度大小为E的电场,使粒子恰能通过狭缝,粒子在再次被加速前射出磁场,不计M、N间的距离。求:
(1)粒子加速到P点所需要的时间t;
(2)极板N的最大厚度;
(3)磁场区域的最大半径。
【答案】(1);(2);(3)
【详解】(1)设粒子在P的速度大小为,则根据
可知半径表达式为
对粒子在静电场中的加速过程,根据动能定理有
粒子在磁场中运动的周期为
粒子运动的总时间为
解得
(2)由粒子的运动半径,结合动能表达式变形得
则粒子加速到P前最后两个半周的运动半径为
,
由几何关系有
结合解得
(3)设粒子在偏转器中的运动半径为,则在偏转器中,要使粒子半径变大,电场力应和洛伦兹力反向,共同提供向心力,即
设粒子离开偏转器的点为,圆周运动的圆心为。由题意知,在上,且粒子飞离磁场的点与、在一条直线上,如图所示。
粒子在偏转器中运动的圆心在点,从偏转器飞出,即从点离开,又进入回旋加速器中的磁场,此时粒子的运动半径又变为,然后轨迹发生偏离,从偏转器的点飞出磁场,那么磁场的最大半径即为
将等腰三角形放大如图所示。
虚线为从点向所引垂线,虚线平分角,则
解得最大半径为
30.(2021·海南·高考真题)如图,间距为l的光滑平行金属导轨,水平放置在方向竖直向下的匀强磁场中,磁场的磁感应强度大小为B,导轨左端接有阻值为R的定值电阻,一质量为m的金属杆放在导轨上。金属杆在水平外力作用下以速度v0向右做匀速直线运动,此时金属杆内自由电子沿杆定向移动的速率为u0。设金属杆内做定向移动的自由电子总量保持不变,金属杆始终与导轨垂直且接触良好,除了电阻R以外不计其它电阻。
(1)求金属杆中的电流和水平外力的功率;
(2)某时刻撤去外力,经过一段时间,自由电子沿金属杆定向移动的速率变为,求:
(i)这段时间内电阻R上产生的焦耳热;
(ii)这段时间内一直在金属杆内的自由电子沿杆定向移动的距离。
【答案】(1),;(2)(i),(ii)
【详解】(1)金属棒切割磁感线产生的感应电动势
E = Blv0
则金属杆中的电流
由题知,金属杆在水平外力作用下以速度v0向右做匀速直线运动则有
根据功率的计算公式有
(2)(i)设金属杆内单位体积的自由电子数为n,金属杆的横截面积为S,则金属杆在水平外力作用下以速度v0向右做匀速直线运动时的电流由微观表示为
解得
当电子沿金属杆定向移动的速率变为时,有
解得
v′ =
根据能量守恒定律有
解得
(ii)由(i)可知在这段时间内金属杆的速度由v0变到,设这段时间内一直在金属杆内的自由电子沿杆定向移动的距离为d,规定水平向右为正方向,则根据动量定理有
由于
解得
31.(2021·湖北·统考高考真题)如图(a)所示,两根不计电阻、间距为L的足够长平行光滑金属导轨,竖直固定在匀强磁场中,磁场方向垂直于导轨平面向里,磁感应强度大小为B。导轨上端串联非线性电子元件Z和阻值为R的电阻。元件Z的图像如图(b)所示,当流过元件Z的电流大于或等于时,电压稳定为Um。质量为m、不计电阻的金属棒可沿导轨运动,运动中金属棒始终水平且与导轨保持良好接触。忽略空气阻力及回路中的电流对原磁场的影响,重力加速度大小为g。为了方便计算,取,。以下计算结果只能选用m、g、B、L、R表示。
(1)闭合开关S。,由静止释放金属棒,求金属棒下落的最大速度v1;
(2)断开开关S,由静止释放金属棒,求金属棒下落的最大速度v2;
(3)先闭合开关S,由静止释放金属棒,金属棒达到最大速度后,再断开开关S。忽略回路中电流突变的时间,求S断开瞬间金属棒的加速度大小a。
【答案】(1);(2);(3)
【分析】[关键能力]本题考 查法拉第电磁感应定律、闭合电路欧姆定律等知识,意在考查考生综合电磁学知识以及力学规律处理问题的能力。
[压轴题透析] 3第(1)问通过对金属棒的受力分析以及运动分析,求出当金属棒的加速度为零时的最大速度;第(2)问首先应分析比较第(1)问中的电流与图(b)中Z元件的电压达到最大时的电流大小关系,然后通过定值电阻表示出回路中的最大电流,进而求出金属棒的最大速度;第(3)问的关键在于求出开关断开瞬间回路中的电流,得出导体棒所受的安培力大小,再根据牛顿第二定律求出金属棒的加速度。
【详解】(1)闭合开关S,金属棒下落的过程中受竖直向下的重力、竖直向上的安培力作用,当重力与安培力大小相等时,金属棒的加速度为零,速度最大,则
由法拉第电磁感应定律得
由欧姆定律得
解得
(2)由第(1)问得
由于
断开开关S后,当金属棒的速度达到最大时,元件Z两端的电压恒为
此时定值电阻两端的电压为
回路中的电流为
又由欧姆定律得
解得
(3)开关S闭合,当金属棒的速度最大时,金属棒产生的感应电动势为
断开开关S的瞬间,元件Z两端的电压为
则定值电阻两端的电压为
电路中的电流为
金属棒受到的安培力为
对金属棒由牛顿第二定律得
解得
32.(2021·辽宁·统考高考真题)如图所示,在x>0区域内存在垂直纸面向里、磁感应强度大小为B的匀强磁场;在x0)的粒子甲从点S(-a,0)由静止释放,进入磁场区域后,与静止在点P(a,a)、质量为的中性粒子乙发生弹性正碰,且有一半电量转移给粒子乙。(不计粒子重力及碰撞后粒子间的相互作用,忽略电场、磁场变化引起的效应)
(1)求电场强度的大小E;
(2)若两粒子碰撞后,立即撤去电场,同时在x≤0区域内加上与x>0区域内相同的磁场,求从两粒子碰撞到下次相遇的时间△t;
(3)若两粒子碰撞后,粒子乙首次离开第一象限时,撤去电场和磁场,经一段时间后,在全部区域内加上与原x>0区域相同的磁场,此后两粒子的轨迹恰好不相交,求这段时间内粒子甲运动的距离L。
【答案】(1);(2);(3)
【详解】(1)粒子甲匀速圆周运动过P点,则在磁场中运动轨迹半径
R=a
则
则
粒子从S到O,有动能定理可得
可得
(2)甲乙粒子在P点发生弹性碰撞,设碰后速度为、,取向上为正,则有
计算可得
两粒子碰后在磁场中运动
解得
两粒子在磁场中一直做轨迹相同的匀速圆周运动,周期分别为
则两粒子碰后再次相遇
解得再次相遇时间
(3)乙出第一象限时甲在磁场中偏转角度为
撤去电场磁场后,两粒子做匀速直线运动,乙粒子运动一段时间后,再整个区域加上相同的磁场,粒子在磁场中仍做半径为a的匀速圆周运动,要求轨迹恰好不相切,则如图所示
设撤销电场、磁场到加磁场乙运动了,由余弦定理可得
则从撤销电场、磁场到加磁场乙运动的位移
33.(2021·天津·高考真题)霍尔元件是一种重要的磁传感器,可用在多种自动控制系统中。长方体半导体材料厚为a、宽为b、长为c,以长方体三边为坐标轴建立坐标系,如图所示。半导体中有电荷量均为e的自由电子与空穴两种载流子,空穴可看作带正电荷的自由移动粒子,单位体积内自由电子和空穴的数目分别为n和p。当半导体材料通有沿方向的恒定电流后,某时刻在半导体所在空间加一匀强磁场,磁感应强度的大小为B,沿方向,于是在z方向上很快建立稳定电场,称其为霍尔电场,已知电场强度大小为E,沿方向。
(1)判断刚加磁场瞬间自由电子受到的洛伦兹力方向;
(2)若自由电子定向移动在沿方向上形成的电流为,求单个自由电子由于定向移动在z方向上受到洛伦兹力和霍尔电场力的合力大小;
(3)霍尔电场建立后,自由电子与空穴在z方向定向移动的速率分别为、,求时间内运动到半导体z方向的上表面的自由电子数与空穴数,并说明两种载流子在z方向上形成的电流应满足的条件。
【答案】(1)自由电子受到的洛伦兹力沿方向;(2);(3)见解析所示
【详解】(1)自由电子受到的洛伦兹力沿方向;
(2)设t时间内流过半导体垂直于x轴某一横截面自由电子的电荷量为q,由电流定义式,有
设自由电子在x方向上定向移动速率为,可导出自由电子的电流微观表达式为
单个自由电子所受洛伦兹力大小为
霍尔电场力大小为
自由电子在z方向上受到的洛伦兹力和霍尔电场力方向相同,联立得其合力大小为
(3)设时间内在z方向上运动到半导体上表面的自由电子数为、空穴数为,则
霍尔电场建立后,半导体z方向的上表面的电荷量就不再发生变化,则应
即在任何相等时间内运动到上表面的自由电子数与空穴数相等,这样两种载流子在z方向形成的电流应大小相等、方向相反。
34.(2021·天津·高考真题)如图所示,两根足够长的平行光滑金属导轨、间距,其电阻不计,两导轨及其构成的平面均与水平面成角,N、Q两端接有的电阻。一金属棒垂直导轨放置,两端与导轨始终有良好接触,已知的质量,电阻,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度大小。在平行于导轨向上的拉力作用下,以初速度沿导轨向上开始运动,可达到最大速度。运动过程中拉力的功率恒定不变,重力加速度。
(1)求拉力的功率P;
(2)开始运动后,经速度达到,此过程中克服安培力做功,求该过程中沿导轨的位移大小x。
【答案】(1);(2)
【详解】(1)在运动过程中,由于拉力功率恒定,做加速度逐渐减小的加速运动,速度达到最大时,加速度为零,设此时拉力的大小为F,安培力大小为,有
设此时回路中的感应电动势为E,由法拉第电磁感应定律,有
设回路中的感应电流为I,由闭合电路欧姆定律,有
受到的安培力
由功率表达式,有
联立上述各式,代入数据解得
(2)从速度到的过程中,由动能定理,有
代入数据解得
35.(2021·北京·高考真题)类比是研究问题的常用方法。
(1)情境1:物体从静止开始下落,除受到重力作用外,还受到一个与运动方向相反的空气阻力(k为常量)的作用。其速率v随时间t的变化规律可用方程(①式)描述,其中m为物体质量,G为其重力。求物体下落的最大速率。
(2)情境2:如图1所示,电源电动势为E,线圈自感系数为L,电路中的总电阻为R。闭合开关S,发现电路中电流I随时间t的变化规律与情境1中物体速率v随时间t的变化规律类似。类比①式,写出电流I随时间t变化的方程;并在图2中定性画出I - t图线。
(3)类比情境1和情境2中的能量转化情况,完成下表。
【答案】(1);(2)a.,b.;(3)见解析
【详解】(1)当物体下落速度达到最大速度时,加速度为零,有
得
(2)a.由闭合电路的欧姆定理有
b.由自感规律可知,线圈产生的自感电动势阻碍电流,使它逐渐变大,电路稳定后自感现象消失,I - t图线如答图2
(3)各种能量转化的规律如图所示
36.(2021·北京·高考真题)如图所示,M为粒子加速器;N为速度选择器,两平行导体板之间有方向相互垂直的匀强电场和匀强磁场,磁场的方向垂直纸面向里,磁感应强度为B。从S点释放一初速度为0、质量为m、电荷量为q的带正电粒子,经M加速后恰能以速度v沿直线(图中平行于导体板的虚线)通过N。不计重力。
(1)求粒子加速器M的加速电压U;
(2)求速度选择器N两板间的电场强度E的大小和方向;
(3)仍从S点释放另一初速度为0、质量为2m、电荷量为q的带正电粒子,离开N时粒子偏离图中虚线的距离为d,求该粒子离开N时的动能。
【答案】(1);(2),方向垂直导体板向下;(3)
【详解】(1)粒子直线加速,根据功能关系有
解得
(2)速度选择器中电场力与洛伦兹力平衡
得
方向垂直导体板向下。
(3)粒子在全程电场力做正功,根据功能关系有
解得
37.(2021·山东·高考真题)某离子实验装置的基本原理如图甲所示。Ⅰ区宽度为d,左边界与x轴垂直交于坐标原点O,其内充满垂直于平面向里的匀强磁场,磁感应强度大小为;Ⅱ区宽度为L,左边界与x轴垂直交于点,右边界与x轴垂直交于点,其内充满沿y轴负方向的匀强电场。测试板垂直x轴置于Ⅱ区右边界,其中心C与点重合。从离子源不断飘出电荷量为q、质量为m的正离子,加速后沿x轴正方向过O点,依次经Ⅰ区、Ⅱ区,恰好到达测试板中心C。已知离子刚进入Ⅱ区时速度方向与x轴正方向的夹角为。忽略离子间的相互作用,不计重力。
(1)求离子在Ⅰ区中运动时速度的大小v;
(2)求Ⅱ区内电场强度的大小E;
(3)保持上述条件不变,将Ⅱ区分为左右两部分,分别填充磁感应强度大小均为B(数值未知)方向相反且平行y轴的匀强磁场,如图乙所示。为使离子的运动轨迹与测试板相切于C点,需沿x轴移动测试板,求移动后C到的距离S。
【答案】(1);(2);(3)
【详解】(1)设离子在Ⅰ区内做匀速圆周运动的半径为r,由牛顿第二定律得
①
根据几何关系得
②
联立①②式得
(2)离子在Ⅱ区内只受电场力,x方向做匀速直线运动,y方向做匀变速直线运动,设从进入电场到击中测试板中心C的时间为t,y方向的位移为,加速度大小为a,由牛顿第二定律得
由运动的合成与分解得
,,
联立得
(3)Ⅱ区内填充磁场后,离子在垂直y轴的方向做线速度大小为vcsθ的匀速圆周运动,如图所示。设左侧部分的圆心角为,圆周运动半径为,运动轨迹长度为,由几何关系得
,
由于在y轴方向的运动不变,离子的运动轨迹与测试板相切于C点,则离子在Ⅱ区内的运动时间不变,故有
C到的距离
联立得
38.(2021·浙江·高考真题)一种探测气体放电过程的装置如图甲所示,充满氖气()的电离室中有两电极与长直导线连接,并通过两水平长导线与高压电源相连。在与长直导线垂直的平面内,以导线为对称轴安装一个用阻值的细导线绕制、匝数的圆环形螺线管,细导线的始末两端c、d与阻值的电阻连接。螺线管的横截面是半径的圆,其中心与长直导线的距离。气体被电离后在长直导线回路中产生顺时针方向的电流I,其图像如图乙所示。为便于计算,螺线管内各处的磁感应强度大小均可视为,其中。
(1)求内通过长直导线横截面的电荷量Q;
(2)求时,通过螺线管某一匝线圈的磁通量;
(3)若规定为电流的正方向,在不考虑线圈自感的情况下,通过计算,画出通过电阻R的图像;
(4)若规定为电流的正方向,考虑线圈自感,定性画出通过电阻R的图像。
【答案】(1);(2);(3)见解析;(4)见解析
【详解】(1)由电量和电流的关系可知图像下方的面积表示电荷量,因此有
代入数据解得
(2)由磁通量的定义可得
代入数据可得
(3)在时间内电流均匀增加,有楞次定律可知感应电流的方向,产生恒定的感应电动势
由闭合回路欧姆定律可得
代入数据解得
在电流恒定,穿过圆形螺旋管的磁场恒定,因此感应电动势为零,感应电流为零,而在时间内电流随时间均匀变化,斜率大小和大小相同,因此电流大小相同,由楞次定律可知感应电流的方向为,则图像如图所示
(4)考虑自感的情况下,线框会产生自感电动势阻碍电流的变化,因此开始时电流是缓慢增加的,过一段时间电路达到稳定后自感消失,电流的峰值和之前大小相同,在时间内电路中的磁通量不变化电流要减小为零,因此自感电动势会阻碍电流的减小,使得电流缓慢减小为零。同理,在内电流缓慢增加,过一段时间电路达到稳定后自感消失,在之后,电路中的磁通量不变化电流要减小为零,因此自感电动势会阻碍电流的减小,使得电流缓慢减小为零。图像如图
39.(2021·浙江·高考真题)如图甲所示,空间站上某种离子推进器由离子源、间距为d的中间有小孔的两平行金属板M、N和边长为L的立方体构成,其后端面P为喷口。以金属板N的中心O为坐标原点,垂直立方体侧面和金属板建立x、y和z坐标轴。M、N板之间存在场强为E、方向沿z轴正方向的匀强电场;立方体内存在磁场,其磁感应强度沿z方向的分量始终为零,沿x和y方向的分量和随时间周期性变化规律如图乙所示,图中可调。氙离子()束从离子源小孔S射出,沿z方向匀速运动到M板,经电场加速进入磁场区域,最后从端面P射出,测得离子经电场加速后在金属板N中心点O处相对推进器的速度为v0。已知单个离子的质量为m、电荷量为,忽略离子间的相互作用,且射出的离子总质量远小于推进器的质量。
(1)求离子从小孔S射出时相对推进器的速度大小vS;
(2)不考虑在磁场突变时运动的离子,调节的值,使得从小孔S射出的离子均能从喷口后端面P射出,求的取值范围;
(3)设离子在磁场中的运动时间远小于磁场变化周期T,单位时间从端面P射出的离子数为n,且。求图乙中时刻离子束对推进器作用力沿z轴方向的分力。
【答案】(1);(2);(3),方向沿z轴负方向
【详解】(1)离子从小孔S射出运动到金属板N中心点O处,根据动能定理有
解得离子从小孔S射出时相对推进器的速度大小
(2)当磁场仅有沿x方向的分量取最大值时,离子从喷口P的下边缘中点射出,根据几何关系有
根据洛伦兹力提供向心力有
联立解得
当磁场在x和y方向的分量同取最大值时,离子从喷口P边缘交点射出,根据几何关系有
此时;根据洛伦兹力提供向心力有
联立解得
故的取值范围为;
(3)粒子在立方体中运动轨迹剖面图如图所示
由题意根据洛伦兹力提供向心力有
且满足
所以可得
所以可得
离子从端面P射出时,在沿z轴方向根据动量定理有
根据牛顿第三定律可得离子束对推进器作用力大小为
方向沿z轴负方向。
40.(2021·广东·高考真题)图是一种花瓣形电子加速器简化示意图,空间有三个同心圆a、b、c围成的区域,圆a内为无场区,圆a与圆b之间存在辐射状电场,圆b与圆c之间有三个圆心角均略小于90°的扇环形匀强磁场区Ⅰ、Ⅱ和Ⅲ。各区感应强度恒定,大小不同,方向均垂直纸面向外。电子以初动能从圆b上P点沿径向进入电场,电场可以反向,保证电子每次进入电场即被全程加速,已知圆a与圆b之间电势差为U,圆b半径为R,圆c半径为,电子质量为m,电荷量为e,忽略相对论效应,取。
(1)当时,电子加速后均沿各磁场区边缘进入磁场,且在电场内相邻运动轨迹的夹角均为45°,最终从Q点出射,运动轨迹如图中带箭头实线所示,求Ⅰ区的磁感应强度大小、电子在Ⅰ区磁场中的运动时间及在Q点出射时的动能;
(2)已知电子只要不与Ⅰ区磁场外边界相碰,就能从出射区域出射。当时,要保证电子从出射区域出射,求k的最大值。
【答案】(1),,;(2)
【详解】(1)电子在电场中加速有
在磁场Ⅰ中,由几何关系可得
联立解得
在磁场Ⅰ中的运动周期为
由几何关系可得,电子在磁场Ⅰ中运动的圆心角为
在磁场Ⅰ中的运动时间为
联立解得
从Q点出来的动能为
(2)在磁场Ⅰ中的做匀速圆周运动的最大半径为,此时圆周的轨迹与Ⅰ边界相切,由几何关系可得
解得
由于
联立解得
41.(2021·全国·高考真题)如图,一倾角为的光滑固定斜面的顶端放有质量的U型导体框,导体框的电阻忽略不计;一电阻的金属棒的两端置于导体框上,与导体框构成矩形回路;与斜面底边平行,长度。初始时与相距,金属棒与导体框同时由静止开始下滑,金属棒下滑距离后进入一方向垂直于斜面的匀强磁场区域,磁场边界(图中虚线)与斜面底边平行;金属棒在磁场中做匀速运动,直至离开磁场区域。当金属棒离开磁场的瞬间,导体框的边正好进入磁场,并在匀速运动一段距离后开始加速。已知金属棒与导体框之间始终接触良好,磁场的磁感应强度大小,重力加速度大小取。求:
(1)金属棒在磁场中运动时所受安培力的大小;
(2)金属棒的质量以及金属棒与导体框之间的动摩擦因数;
(3)导体框匀速运动的距离。
【答案】(1);(2),;(3)
【分析】、
【详解】(1)根据题意可得金属棒和导体框在没有进入磁场时一起做匀加速直线运动,由动能定理可得
代入数据解得
金属棒在磁场中切割磁场产生感应电动势,由法拉第电磁感应定律可得
由闭合回路的欧姆定律可得
则导体棒刚进入磁场时受到的安培力为
(2)金属棒进入磁场以后因为瞬间受到安培力的作用,根据楞次定律可知金属棒的安培力沿斜面向上,之后金属棒相对导体框向上运动,因此金属棒受到导体框给的沿斜面向下的滑动摩擦力,因匀速运动,可有
此时导体框向下做匀加速运动,根据牛顿第二定律可得
设磁场区域的宽度为x,则金属棒在磁场中运动的时间为
当金属棒刚好离开磁场区域时,则此时导体框的速度为
则导体框的位移
因此导体框和金属棒的相对位移为
由题意当金属棒离开磁场时金属框的上端EF刚好进入磁场,则有位移关系
金属框进入磁场时匀速运动,此时的电动势为
导体框受到向上的安培力和滑动摩擦力,因此可得
联立以上可得
(3)金属棒出磁场以后,速度小于导体框的速度,因此受到向下的摩擦力,做加速运动,则有
金属棒向下加速,导体框匀速,当共速时导体框不再匀速,则有
导体框匀速运动的距离为
代入数据解得
42.(2021·全国·高考真题)如图,长度均为l的两块挡板竖直相对放置,间距也为l,两挡板上边缘P和M处于同一水平线上,在该水平线的上方区域有方向竖直向下的匀强电场,电场强度大小为E;两挡板间有垂直纸面向外、磁感应强度大小可调节的匀强磁场。一质量为m,电荷量为q(q>0)的粒子自电场中某处以大小为v0的速度水平向右发射,恰好从P点处射入磁场,从两挡板下边缘Q和N之间射出磁场,运动过程中粒子未与挡板碰撞。已知粒子射入磁场时的速度方向与PQ的夹角为60°,不计重力。
(1)求粒子发射位置到P点的距离;
(2)求磁感应强度大小的取值范围;
(3)若粒子正好从QN的中点射出磁场,求粒子在磁场中的轨迹与挡板MN的最近距离。
【答案】(1) ;(2) ;(3)粒子运动轨迹见解析,
【详解】(1)带电粒子在匀强电场中做类平抛运动,由类平抛运动规律可知
①
②
粒子射入磁场时的速度方向与PQ的夹角为60°,有
③
粒子发射位置到P点的距离
④
由①②③④式得
⑤
(2)带电粒子在磁场运动在速度
⑥
带电粒子在磁场中运动两个临界轨迹(分别从Q、N点射出)如图所示
由几何关系可知,最小半径
⑦
最大半径
⑧
带电粒子在磁场中做圆周运动的向心力由洛伦兹力提供,由向心力公式可知
⑨
由⑥⑦⑧⑨解得,磁感应强度大小的取值范围
(3)若粒子正好从QN的中点射出磁场时,带电粒子运动轨迹如图所示。
由几何关系可知
⑩
带电粒子的运动半径为
⑪
粒子在磁场中的轨迹与挡板MN的最近距离
⑫
由⑩⑪⑫式解得
⑬
43.(2021·河北·高考真题)如图,一对长平行栅极板水平放置,极板外存在方向垂直纸面向外、磁感应强度大小为B的匀强磁场,极板与可调电源相连,正极板上O点处的粒子源垂直极板向上发射速度为、带正电的粒子束,单个粒子的质量为m、电荷量为q,一足够长的挡板与正极板成倾斜放置,用于吸收打在其上的粒子,C、P是负极板上的两点,C点位于O点的正上方,P点处放置一粒子靶(忽略靶的大小),用于接收从上方打入的粒子,长度为,忽略栅极的电场边缘效应、粒子间的相互作用及粒子所受重力。。
(1)若粒子经电场一次加速后正好打在P点处的粒子靶上,求可调电源电压的大小;
(2)调整电压的大小,使粒子不能打在挡板上,求电压的最小值;
(3)若粒子靶在负极板上的位置P点左右可调,则负极板上存在H、S两点(,H、S两点末在图中标出)、对于粒子靶在区域内的每一点,当电压从零开始连续缓慢增加时,粒子靶均只能接收到n()种能量的粒子,求和的长度(假定在每个粒子的整个运动过程中电压恒定)。
【答案】(1);(2);(3);
【详解】(1)从O点射出的粒子在板间被加速,则
粒子在磁场中做圆周运动,则半径
由
解得
(2)当电压有最小值时,当粒子穿过下面的正极板后,圆轨道与挡板OM相切,此时粒子恰好不能打到挡板上,则
从O点射出的粒子在板间被加速,则
粒子在负极板上方的磁场中做圆周运动
粒子从负极板传到正极板时速度仍减小到v0,则
由几何关系可知
联立解得
(3)结合(2)分析可知,当粒子经上方磁场再进入下方磁场时,轨迹与挡板相切时,粒子运动轨迹半径分别为r2、r3,则
①当粒子在下方区域磁场的运动轨迹正好与OM相切,再进入上方磁场区域做圆周运动,轨迹与负极板的交点记为H2,当增大两极板的电压,粒子在上方磁场中恰好运动到H2点时,粒子靶恰好能够接收2种能量的粒子,此时H2点为距C点最近的位置,是接收2种能量的粒子的起点,运动轨迹如图所示
由几何关系可得
②同理可知当粒子靶接收3种能量的粒子的运动轨迹如图所示
第③个粒子经过下方磁场时轨迹与MN相切,记该粒子经过H2后再次进入上方磁场区域运动时轨迹与负极板的交点为H3 (S2) ,则该点为接收两种粒子的终点,同时也是接收3种粒子的起点。由几何关系可得
可知,粒子靶接收n种、n+1种粒子的起点(即粒子靶接收n种粒子的起点与终点)始终相距
当粒子靶接收n种能量的粒子时,可得
44.(2021·湖南·高考真题)带电粒子流的磁聚焦和磁控束是薄膜材料制备的关键技术之一、带电粒子流(每个粒子的质量为、电荷量为)以初速度垂直进入磁场,不计重力及带电粒子之间的相互作用。对处在平面内的粒子,求解以下问题。
(1)如图(a),宽度为的带电粒子流沿轴正方向射入圆心为、半径为的圆形匀强磁场中,若带电粒子流经过磁场后都汇聚到坐标原点,求该磁场磁感应强度的大小;
(2)如图(a),虚线框为边长等于的正方形,其几何中心位于。在虚线框内设计一个区域面积最小的匀强磁场,使汇聚到点的带电粒子流经过该区域后宽度变为,并沿轴正方向射出。求该磁场磁感应强度的大小和方向,以及该磁场区域的面积(无需写出面积最小的证明过程);
(3)如图(b),虚线框Ⅰ和Ⅱ均为边长等于的正方形,虚线框Ⅲ和Ⅳ均为边长等于的正方形。在Ⅰ、Ⅱ、Ⅲ和Ⅳ中分别设计一个区域面积最小的匀强磁场,使宽度为的带电粒子流沿轴正方向射入Ⅰ和Ⅱ后汇聚到坐标原点,再经过Ⅲ和Ⅳ后宽度变为,并沿轴正方向射出,从而实现带电粒子流的同轴控束。求Ⅰ和Ⅲ中磁场磁感应强度的大小,以及Ⅱ和Ⅳ中匀强磁场区域的面积(无需写出面积最小的证明过程)。
【答案】(1);(2),垂直与纸面向里,;(3),,,
【详解】(1)粒子垂直进入圆形磁场,在坐标原点汇聚,满足磁聚焦的条件,即粒子在磁场中运动的半径等于圆形磁场的半径,粒子在磁场中运动,洛伦兹力提供向心力
解得
(2)粒子从点进入下方虚线区域,若要从聚焦的点飞入然后平行轴飞出,为磁发散的过程,即粒子在下方圆形磁场运动的轨迹半径等于磁场半径,粒子轨迹最大的边界如图所示,图中圆形磁场即为最小的匀强磁场区域
磁场半径为,根据可知磁感应强度为
根据左手定则可知磁场的方向为垂直纸面向里,圆形磁场的面积为
(3)粒子在磁场中运动,3和4为粒子运动的轨迹圆,1和2为粒子运动的磁场的圆周
根据可知I和III中的磁感应强度为
,
图中箭头部分的实线为粒子运动的轨迹,可知磁场的最小面积为叶子形状,取I区域如图
图中阴影部分面积的一半为四分之一圆周与三角形之差,所以阴影部分的面积为
类似地可知IV区域的阴影部分面积为
根据对称性可知II中的匀强磁场面积为
45.(2021·浙江·统考高考真题)在芯片制造过程中,离子注入是其中一道重要的工序。如图所示是离子注入工作原理示意图,离子经加速后沿水平方向进入速度选择器,然后通过磁分析器,选择出特定比荷的离子,经偏转系统后注入处在水平面内的晶圆(硅片)。速度选择器、磁分析器和偏转系统中的匀强磁场的磁感应强度大小均为B,方向均垂直纸面向外;速度选择器和偏转系统中的匀强电场场强大小均为E,方向分别为竖直向上和垂直纸面向外。磁分析器截面是内外半径分别为R1和R2的四分之一圆环,其两端中心位置M和N处各有一个小孔;偏转系统中电场和磁场的分布区域是同一边长为L的正方体,其偏转系统的底面与晶圆所在水平面平行,间距也为L。当偏转系统不加电场及磁场时,离子恰好竖直注入到晶圆上的O点(即图中坐标原点,x轴垂直纸面向外)。整个系统置于真空中,不计离子重力,打在晶圆上的离子,经过电场和磁场偏转的角度都很小。当α很小时,有,。求:
(1)离子通过速度选择器后的速度大小v和磁分析器选择出来离子的比荷;
(2)偏转系统仅加电场时离子注入晶圆的位置,用坐标(x,y)表示;
(3)偏转系统仅加磁场时离子注入晶圆的位置,用坐标(x,y)表示;
(4)偏转系统同时加上电场和磁场时离子注入晶圆的位置,用坐标(x,y)表示,并说明理由。
【答案】(1),;(2)(,0);(3)(0,);(4)见解析
【详解】(1)通过速度选择器离子的速度
从磁分析器中心孔N射出离子的运动半径为
由得
(2)经过电场后,离子在x方向偏转的距离
离开电场后,离子在x方向偏移的距离
位置坐标为(,0)
(3)离子进入磁场后做圆周运动半径
经过磁场后,离子在y方向偏转距离
离开磁场后,离子在y方向偏移距离
则
位置坐标为(0,)
(4)注入晶圆的位置坐标为(,),电场引起的速度增量对y方向的运动不产生影响。
46.(2021·浙江·统考高考真题)嫦娥五号成功实现月球着陆和返回,鼓舞人心。小明知道月球上没有空气,无法靠降落伞减速降落,于是设计了一种新型着陆装置。如图所示,该装置由船舱、间距为l的平行导轨、产生垂直船舱导轨平面的磁感应强度大小为B的匀强磁场的磁体和“∧”型刚性线框组成,“∧”型线框ab边可沿导轨滑动并接触良好。船舱、导轨和磁体固定在一起,总质量为m1整个装置竖直着陆到月球表面前瞬间的速度大小为v0,接触月球表面后线框速度立即变为零。经过减速,在导轨下方缓冲弹簧接触月球表面前船舱已可视为匀速。已知船舱电阻为3r,“∧”型线框的质量为m2,其7条边的边长均为l,电阻均为r;月球表面的重力加速度为g/6。整个运动过程中只有ab边在磁场中,线框与月球表面绝缘,不计导轨电阻和摩擦阻力。
(1)求着陆装置接触到月球表面后瞬间线框ab边产生的电动势E;
(2)通过画等效电路图,求着陆装置接触到月球表面后瞬间流过ab型线框的电流I0;
(3)求船舱匀速运动时的速度大小v;
(4)同桌小张认为在磁场上方、两导轨之间连接一个电容为C的电容器,在着陆减速过程中还可以回收部分能量,在其他条件均不变的情况下,求船舱匀速运动时的速度大小和此时电容器所带电荷量q。
【答案】(1)Blv0;(2);(3);(4),
【详解】(1)导体切割磁感线,电动势
(2)等效电路图如图
并联总电阻
电流
(3)匀速运动时线框受到安培力
根据牛顿第三定律,质量为m1的部分受力F=FA,方向竖直向上,匀速条件
得
(4)匀速运动时电容器不充放电,满足
电容器两端电压为
电荷量为
情境1
情境2
物体重力势能的减少量
物体动能的增加量
电阻R上消耗的电能
情境1
情境2
电源提供的电能
线圈磁场能的增加量
克服阻力做功消耗的机械能
相关试卷
这是一份2021-2023年高考物理真题选编:交变电流(解析版),共24页。试卷主要包含了单选题,多选题等内容,欢迎下载使用。
这是一份2021-2023年高考物理真题选编:机械振动机械波(解析版),共25页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
这是一份2021-2023年高考物理真题选编:光学(解析版),共31页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
