模拟卷07(2024新题型)-【赢在高考·模拟8卷】备战2024年高考数学模拟卷(江苏专用)
展开(考试时间:120分钟 试卷满分:150分)
一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的.
1.设集合,,则 ( )
A.B.C.D.
2.已知复数满足,为虚数单位,则 ( )
A.B.C.D.
3.已知,且,则 ( )
A. B.
C. D.
4.已知,满足对任意,都有成立,那么的取值范围是( )
A.B.C.D.
5.已知向量,满足,且,则向量在向量上的投影向量为 ( )
A.1B.C.D.
6.如图为古代玩具蹴鞠,又名蹴球、蹴圆、筑球、踢圆等,蹴有用脚蹴、踢、蹋的含义,鞠最早系外包皮革、内实米糠的球.因而蹴鞠就是指古人以脚蹴、蹋、踢皮球的活动,类似今日的足球.2006年5月20日,蹴鞠已作为非物质文化遗产经国务院批准列入第一批国家非物质文化遗产名录,已知某鞠的表面上有四个点A,B,C,D,四面体ABCD的体积为,BD经过该鞠的中心,且,,则该鞠的表面积为 ( )
A.B.C.D.
7.已知,,(e为自然对数的底数),则 ( )
A.B.C.D.
8.已知,,,,则( )
A.B.C.D.
二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得6分,部分选对的得3分,有选错的得0分.
9.已知函数,则( )
A. 当时,函数的最小值为
B. 当时,函数的极大值点为
C. 存在实数使得函数在定义域上单调递增
D. 若恒成立,则实数的取值范围为
10.已知正四棱台的上下底面边长分别为4,6,高为,E是的中点,则( )
A. 正四棱台的体积为
B. 正四棱台的外接球的表面积为104π
C. AE∥平面
D. 到平面的距离为
11.某岗位聘用考核设置2个环节,竞聘者需要参加2个环节全部考核,2个环节的考核同时合格才能录用.规定:第1环节考核3个项目,至少通过2个为合格,否则为不合格;第2环节考核5个项目,至少连续通过3个为合格,否则为不合格.统计已有的测试数据得出第1环节每个项目通过的概率均为,第2环节每个项目通过的概率均为,各环节、各项目间相互独立,则( )
A. 竞聘者第1环节考核通过的概率为
B. 若竞聘者第1环节考核通过个项目,则的均值
C. 竞聘者第2环节考核通过的概率为
D. 竞聘者不通过岗位聘用考核可能性在95%以下
三、填空题:本题共3小题,每小题5分,共15分.
12.已知函数,①,②,请写出一个同时满足条件①②的函数的解析式为______.
13.已知分别为椭圆的左右焦点,P为C上一动点,A为C的左顶点,若,则C的离心率为 .
14. “中国剩余定理”又称“孙子定理”,最早可见于中国南北朝时期的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”,原文如下:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?现有这样一个相关的问题:被除余且被除余的正整数按照从小到大的顺序排成一列,构成数列,记数列的前项和为,则的最小值为_______.
四、解答题:本题共5小题,共77分,解答应写出必要的文字说明、证明过程及验算步骤.
15.(本小题13分)已知等差数列的公差为正数,,前项和为,数列为等比数列,,且,.
(1)求数列、的通项公式;
(2)令,求数列的前项的和.
16.(本小题15分)如图,在四棱锥中,底面为矩形,底面为线段的中点,为线段上的动点.
(1)求证:平面平面;
(2)试求的长,使平面与平面所成的锐二面角为.
17.(本小题15分)日前,中华人民共和国应急管理部公布了《高层民用建筑消防安全规定》.其中提到:在公共门厅等地停放电动车或充电,拒不改正的个人,最高可处以100元罚款,为了研究知晓规定是否与年龄有关,某市随机抽取125名市民进行抽样调查,得到如下2×2列联表∶
参考公式∶,其中
(1)根据以上统计数据,是否有的把握认为知晓规定与年龄有关?
(2)将上述调查所得的频率视为概率,现在从本地所有市民中,采用随机抽样的方法抽取 位市民,记被抽取的位市民中知晓规定的人数为,求的分布列及数学期望.
18.(本小题17分)如图,已知点,抛物线的焦点是,A,B是抛物线上两点,四边形是矩形.
(1)求抛物线的方程;
(2)求矩形的面积.
19.(本小题17分)已知函数(为自然对数的底数).
(1)若不等式恒成立,求实数的取值范围;
(2)若不等式在上恒成立,求实数的取值范围.
知晓
不知晓
总计
年龄≤60
16
34
50
年龄>60
9
66
75
总计
25
100
125
0.10
0.05
0.025
0.010
0.005
0.001
2.706
3.841
5.024
6.635
7.879
10.828
模拟卷08(2024新题型)-【赢在高考·模拟8卷】备战2024年高考数学模拟卷(江苏专用): 这是一份模拟卷08(2024新题型)-【赢在高考·模拟8卷】备战2024年高考数学模拟卷(江苏专用),文件包含黄金卷-赢在高考·黄金8卷备战2024年高考数学模拟卷江苏专用解析版docx、黄金卷-赢在高考·黄金8卷备战2024年高考数学模拟卷江苏专用参考答案docx、黄金卷-赢在高考·黄金8卷备战2024年高考数学模拟卷江苏专用考试版docx等3份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。
模拟卷05(2024新题型)-【赢在高考·模拟8卷】备战2024年高考数学模拟卷(江苏专用): 这是一份模拟卷05(2024新题型)-【赢在高考·模拟8卷】备战2024年高考数学模拟卷(江苏专用),文件包含黄金卷05-赢在高考·黄金8卷备战2024年高考数学模拟卷江苏专用原卷版docx、黄金卷05-赢在高考·黄金8卷备战2024年高考数学模拟卷江苏专用解析版docx、黄金卷05-赢在高考·黄金8卷备战2024年高考数学模拟卷江苏专用参考答案docx等3份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
模拟卷04(2024新题型)-【赢在高考·模拟8卷】备战2024年高考数学模拟卷(江苏专用): 这是一份模拟卷04(2024新题型)-【赢在高考·模拟8卷】备战2024年高考数学模拟卷(江苏专用),文件包含黄金卷042024新题型江苏专用解析版docx、黄金卷042024新题型江苏专用参考答案docx、黄金卷042024新题型江苏专用考试版docx等3份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。