所属成套资源:2024黑龙江省协作体高三下学期三模考试及答案(九科)
2024黑龙江省协作体高三下学期三模考试数学含解析
展开
这是一份2024黑龙江省协作体高三下学期三模考试数学含解析,共13页。试卷主要包含了选择题的作答,非选择题的作答,已知抛物线C,已知双曲线C等内容,欢迎下载使用。
注意事项:
1.本卷满分150分,考试时间120分钟。答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.
1.已知集合A={2,3},B={x|00)的左、右焦点分别为F1,F2,过F1作直线与双曲线C的左,右两支分别交于A,B两点.若,且cs∠F1BF2=,则双曲线C的离心率为
A. C.4 B. D.3
二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
9.在某市初三年级举行的一次体育考试中(满分100分),所有考生成绩均在[50,100]内,按照[50,60),[60,70),[70,80),[80,90),[90,100]分成五组,甲、乙两班考生的成绩占比如图所示,则下列说法错误的是
A.成绩在[70,80)的考生中,甲班人数多于乙班人数
B.甲班成绩在[80,90)内人数最多
C.乙班成绩在[70,80)内人数最多
D.甲班成绩的极差比乙班成绩的极差小
10.如图,三棱锥P-ABC中,PA,PB,PC两两垂直,PA=2PB=2PC=2,则
A.BC⊥PA B.三棱锥P-ABC的体积为
C.点P到平面ABC的距离为 D.三棱锥P一ABC的外接球的表面积为
11.已知函数,则下列结论正确的是
A.的图象在点处的切线在y轴上的截距为
B.在上为增函数
G.在上的最大值为多e
D.若在内恰有11个极值点,则实数m的取值范围为
三、填空题:本题共3小题,每小题5分,共15分.
12.甲、乙两个家庭共10人周末到某景区游玩,他们在景区门口站成两排拍照,每排5人且从左到右按从高到矮的顺序排列,则有_________种排法.(用数字作答)
13.已知圆C:,A(-3,0),B(-1,0).若C上存在点P,使得∠APB=90°,则r的取值范围为____________.
14在长方体AECD-A1B1C1D1中,AB=AA1=4,AD=2,点Р为侧面ABB1A1内一动点P,且满足C1P//平面ACD1,则C1P的最小值为_________,此时点P到直线A1C1的距离为___________.
四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.
15.(13分)
已知函数.
(1)若,求曲线在点(0,f(0))处的切线方程;
(2)若恰有三个零点,求a的取值范围.
16.(15分)
为建立健全国家学生体质健康监测评价机制,激励学生积极参加身体锻炼,教育部印发了《国家学生体质健康标准》,要求各学校每学年开展覆盖本校各年级学生的《标准》测试工作.为做好全省的迎检工作,某市在高三年级开展了一次体质健康模拟测试,并从中随机抽取了500名学生的数据,根据他们的健康指数绘制了如图所示的频率分布直方图.
(1)估计这500名学生健康指数的平均数(同一组数据用该组区间的中点值作代表);
(2)由频率分布直方图知,该市学生的健康指数X近似服从正态分布N(,),其中近似为样本平均数,近似为样本方差(=84.75).
①求P(60.29≤X≤87.92);
②已知该市高三学生约有30000名,记健康指数在区间[60.29,87.92]的人数为,试求E().
附:参考数据:,若随机变量X服从正态分布N(,),则,,.
17.(15分)
在如图所示的多面体MNABCD中,四边形ABCD是边长为/2的正方形,其对角线的交点为Q,DM⊥平面ABCD,DM∥BN,DM=2BN=2,点P是棱DM的中点.
(1)求证:PQ⊥平面ANC;
(2)求直线AN和平面CMN所成角的正弦值.
18.(17分)
记椭圆C:的左、右顶点分别为A1,A2,上顶点为B(0,1),直线BA1,BA2的斜率满足.
(1)求椭圆C的方程;
(2)已知椭圆上点(,)处的切线方程是.若点P为直线l:上的动点,过点P作椭圆C的切线PM,PN,切点分别为M,N,求△PMN面积的最小值.
19.(17分)
如果n项有穷数列满足,,…,,即(i=1,2…,n),则称有穷数列为“对称数列”.
(1)设数列是项数为7的“对称数列”,其中b1,b2,b3,b4成等差数列,且b2=3,b5=5,依次写出数列的每一项;
(2)设数列是项数为(且)的“对称数列”,且满足,记为数列的前n项和.
①若,,…,构成单调递增数列,且.当k为何值时,取得最大值?
②若=2024,且=2024,求k的最小值.
2023~2024学年度高三年级第三次模拟·数学
参考答案、提示及评分细则
1.C 由题知B={x|0
相关试卷
这是一份黑龙江省协作体2024届高三下学期三模考试 数学 Word版含解析,共13页。试卷主要包含了选择题的作答,非选择题的作答,已知抛物线C,已知双曲线C等内容,欢迎下载使用。
这是一份黑龙江省协作体2024届高三下学期三模考试数学试题(Word版附解析),共13页。试卷主要包含了选择题的作答,非选择题的作答,已知抛物线C,已知双曲线C等内容,欢迎下载使用。
这是一份2024届湖北省新高考协作体高三下学期4月一模考试数学试题及答案,文件包含湖北省新高考协作体2024届高三统一模拟考试数学试题一无答案pdf、数学含答pdf等2份试卷配套教学资源,其中试卷共15页, 欢迎下载使用。