云南省昆明市师范大学附属中学2023-2024学年高二下学期教学测评月考(五)数学试题(Word版附解析)
展开
这是一份云南省昆明市师范大学附属中学2023-2024学年高二下学期教学测评月考(五)数学试题(Word版附解析),文件包含云南省昆明市师范大学附属中学2023-2024学年高二下学期教学测评月考五数学试题Word版含解析docx、云南省昆明市师范大学附属中学2023-2024学年高二下学期教学测评月考五数学试题Word版无答案docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷第1页至第2页,第Ⅱ卷第3页至第4页.考试结束后,请将本试卷和答题卡一并交回.满分150分,考试用时120分钟.
第Ⅰ卷(选择题,共60分)
注意事项:
1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.
一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题所给的四个选项中,只有一项是符合题目要求的)
1. 设为等差数列的前项和,已知,则的值为( )
A. 5B. 7C. 9D. 10
2. 设是可导函数,且,则( )
A. B. C. D.
3. 已知等比数列的各项均为正数,公比,且满足,则( )
A. 16B. 8C. 4D. 2
4. 若函数导函数为,则的解集为( )
A. B. C. D.
5. 已知,则向量在向量上的投影向量是( )
A. B. C. D.
6. 过点作圆的切线,直线与直线平行,则直线与的距离为( )
A. 4B. 2C. D.
7. 已知函数在区间上单调递增,则实数的最小值为( )
A. 1B. 2C. 3D. 4
8. 已知是函数的极小值点,则( )
A. B. C. 3D.
二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项是符合题目要求的.全部选对的得5分,部分选对的得2分,有选错的得0分)
9. 下列求导运算正确的是( )
A. 若,则
B. 若,则
C. 若,则
D 若,则
10. 已知数列满足,设的前项和为,则下列说法正确的有( )
A. 若,则B. 若,则
C. 若,则D. 若,则
11. 双曲线的左、右焦点分别为,离心率为.过作其中一条渐近线的垂线,垂足为.已知,直线的斜率为,则( )
A. B.
C. 双曲线的方程为D.
12. 已知,下列说法正确的是( )
A. 在处的切线方程为B. 的单调递减区间为
C. 的极大值为D. 方程有1个不同的解
第Ⅱ卷(非选择题,共90分)
注意事项:
第Ⅱ卷用黑色碳素笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.
三、填空题(本大题共4小题,每小题5分,共20分)
13 已知数列满足,且,则_______.
14. 函数的导函数为,满足关系式,则的值为_______.
15. 已知直线过抛物线的焦点,与相交于两点,且.若线段的中点的横坐标为3,则焦点的坐标为_______;直线的斜率为_______.
16. 定义在上的偶函数的导函数满足,且,若,则不等式的解集为_______.
四、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)
17. 已知数列的前项和为,且.
(1)求的通项公式;
(2)记,求数列的前项和.
18. 已知函数,且.
(1)求曲线在点处的切线方程;
(2)求函数的极值.
19 给出以下三个条件:①;②成等比数列;③.请从这三个条件中任选一个,补充到下面问题中,并完成作答.若选择多个条件分别作答,以第一个作答计分.
已知公差不为0的等差数列的前项和为,_______.
(1)求数列的通项公式;
(2)若,令,求数列的前项和.
20. 已知函数,其图象在点处的切线方程为.
(1)求函数的解析式;
(2)求函数在区间上的最值.
21. 椭圆的离心率,且椭圆的短轴长为2.
(1)求椭圆的方程;
(2)设直线过点,且与椭圆相交于两点,又点是椭圆的下顶点,当面积最大时,求直线的方程.
22. 已知函数.
(1)讨论函数的单调性;
(2)设,若存在零点,求实数取值范围.
相关试卷
这是一份云南师范大学附属中学2023-2024学年高二下学期3月月考数学试题(Word版附解析),共14页。试卷主要包含了若函数的导函数为,则的解集为,已知是函数的极小值点,则,下列求导运算正确的是等内容,欢迎下载使用。
这是一份2023-2024学年云南省昆明市云南师范大学附属中学高一上学期教学测评月考(四)(12月)数学试题(含解析),共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年云南省昆明市云南师范大学附属中学高二上学期教学测评月考(三)数学试题含答案,共16页。试卷主要包含了单选题,多选题,填空题,双空题,解答题等内容,欢迎下载使用。