所属成套资源:2024年高考数学二轮复习通用版(学生版+教师版)
2024年通用版高考数学二轮复习专题8.1 空间几何体的表面积和体积(学生版)
展开这是一份2024年通用版高考数学二轮复习专题8.1 空间几何体的表面积和体积(学生版),共13页。
题型一空间几何体的结构特征
例1.(2023·上海·上海市七宝中学校考模拟预测)《九章算术》中,将四个面都是直角三角形的四面体称为“鳖臑”,在长方体中,鳖臑的个数为( )
A.B.C.D.
例2.(2023·全国·高一专题练习)下列关于空间几何体结构特征的描述错误的是( )
A.棱柱的侧棱互相平行
B.以直角三角形的一边为轴旋转一周得到的几何体不一定是圆锥
C.正三棱锥的各个面都是正三角形
D.棱台各侧棱所在直线会交于一点
练习1.(2023·全国·高一专题练习)一个几何体由六个面组成,其中两个面是互相平行且相似的四边形,其余各面都是全等的等腰梯形,则这个几何体是( )
A.三棱柱B.三棱台C.四棱柱D.四棱台
练习2.(2023·全国·高三专题练习)(多选)下列说法正确的是( )
A.以三角形的一边所在直线为轴旋转一周所得的旋转体是圆锥
B.棱台的侧面都是等腰梯形
C.底面半径为r,母线长为2r的圆锥的轴截面为等边三角形
D.棱柱的侧棱长都相等,但侧棱不一定都垂直于底面
练习3.(2023·全国·高三专题练习)下列说法正确的是( )
A.等边三角形绕其一条边旋转一周所得的几何体是圆锥
B.球体的截面都是圆面
C.正四棱台的侧面展开图是一个等腰梯形
D.正三棱锥的四个面都是等边三角形
练习4.(2023春·甘肃·高三校联考期中)(多选)下列命题正确的是( )
A.圆锥的顶点与底面圆周上任意一点的连线都是母线
B.两个面平行且相似,其余各面都是梯形的多面体是棱台
C.以直角梯形的一条直角腰所在的直线为旋转轴,其余三边旋转一周形成的面所围成的旋转体是圆台
D.用平面截圆柱得到的截面只能是圆和矩形
练习5.(2023春·江西鹰潭·高三贵溪市实验中学校考阶段练习)某儿童玩具的实物图如图1所示,从中抽象出的几何模型如图2所示,由OA,OB,OC,OD四条等长的线段组成,其结构特点是能使它任意抛至水平面后,总有一条线段所在的直线竖直向上,则=( )
A.B.C.D.
题型二斜二测画法
例3.(2023春·河南·高三洛阳市第三中学校联考阶段练习)如图,是的直观图,则是( )
A.正三角形B.直角三角形
C.钝角三角形D.以上都有可能
例4.(2023·全国·高三专题练习)某几何体底面的四边形OABC直观图为如图矩形,其中,,则该几何体底面对角线AC的实际长度为( )
A.6B.C.D.
练习6.(2023春·全国·高三专题练习)如图等腰梯形,,,,,那么该梯形直观图的面积是______.
练习7.(2023·全国·高三专题练习)如图,是的直观图,其中,,那么是一个( )
A.等边三角形B.直角三角形C.等腰三角形D.无法确定
练习8.(2023·全国·高一专题练习)已知在如图所示的等腰梯形中,,,用斜二测画法画出该梯形的直观图,则该梯形的直观图的面积为__________.
练习9.(2023·全国·高三专题练习)如图所示,矩形是水平放置的一个平面图形的直观图,其中,,则原图形是( )
A.面积为的矩形B.面积为的矩形
C.面积为的菱形D.面积为的菱形
练习10.(2023春·河南周口·高三校考期末)如图,一个水平放置的平面图形的直观图是边长为2的正方形,则原图形的周长是( )
A.16B.12C.D.
题型三最短路径
例5.(2023·全国·高三专题练习)如图,圆锥的底面圆直径AB为2,母线长SA为4,若小虫P从点A开始绕着圆锥表面爬行一圈到SA的中点C,则小虫爬行的最短距离为( )
A.B.C.D.
例6.(2023·全国·高一专题练习)如图,正三棱锥中,,点分别为的中点,一只蚂蚁从点出发,沿三棱锥侧面爬行到点,求:
(1)该三棱锥的体积与表面积;
(2)蚂蚁爬行的最短路线长.
练习11.(2023·安徽铜陵·统考三模)如图是一座山的示意图,山大致呈圆锥形,山脚呈圆形,半径为2km,山高为,是山坡上一点,且.现要建设一条从到的环山观光公路,这条公路从出发后先上坡,后下坡,当公路长度最短时,下坡路段长为______.
练习12.(2023·全国·高三专题练习)如图,一竖立在地面上的圆锥形物体的母线长为,一只小虫从圆锥的底面圆上的点出发,绕圆锥爬行一周后回到点处,若该小虫爬行的最短路程为,则这个圆锥的体积为( )
A.B.C.D.
练习13.(2023·四川资阳·统考三模)如图,在正三棱柱ABC-A1B1C1中,,D在A1C上,E是A1B的中点,则的最小值是( )
A.B.C.D.
练习14.(2023春·安徽·高三安徽师范大学附属中学校考阶段练习)如图,在长方体中,,,,若P为线段上的动点,则的最小值为______.
练习15.(2023·全国·高三专题练习)长方体ABCD-A1B1C1D1中,宽、长、高分别为3、4、5,现有一个小虫从A出发沿长方体表面爬行到C1来获取食物,则其路程的最小值为________.
题型四空间几何体的表面积
例7.(2023·江西·统考模拟预测)已知某圆锥的底面半径为2,其体积与半径为1的球的体积相等,则该圆锥的母线长为( )
A.1B.2C.D.5
例8.(2023春·福建厦门·高三厦门一中校考期中)已知圆锥PO,其轴截面(过圆锥旋转轴的截面)是底边长为6m,顶角为的等腰三角形,该圆锥的侧面积为( )
A.B.C.D.
练习16.(2023·安徽安庆·安庆一中校考三模)陀螺起源于我国,最早出土的石制陀螺是在山西夏县发现的新石器时代遗址.如图所示的是一个陀螺立体结构图.已知,底面圆的直径,圆柱体部分的高,圆锥体部分的高,则这个陀螺的表面积(单位:)是( )
A.B.
C.D.
练习17.(2023·湖北黄冈·黄冈中学校考二模)(多选)一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径2R相等,则下列结论正确的是( )
A.圆柱的侧面积为
B.圆锥的侧面积为
C.圆柱的侧面积与球的表面积相等
D.圆柱、圆锥、球的体积之比为
练习18.(河北省2023届高三模拟(六)数学试题)柷(zhù),是一种古代打击乐器,迄今已有四千多年的历史,柷的上方形状犹如四方形木斗,上宽下窄,下方有一底座,用椎(木棒)撞击其内壁发声,表示乐曲将开始.如图,某柷(含底座)高,上口正方形边长,下口正方形边长,底座可近似地看作是底面边长比下口边长长,高为的正四棱柱,则该柷(含底座)的侧面积约为()( )
A.B.C.D.
练习19.(2023·安徽合肥·合肥市第八中学校考模拟预测)“阿基米德多面体”也称为半正多面体(semi-regularslid),是由边数不全相同的正多边形为面围成的多面体,它体现了数学的对称美.如图,它是由正方体沿交于一顶点的三条棱的中点截去一个三棱锥,共截去八个三棱锥得到.已知,若该半正多面体的表面积为,体积为,则为( )
A.B.C.2D.
练习20.(2023·安徽合肥·合肥一中校考模拟预测)(多选)已知半径为R的球与圆台的上下底面和侧面都相切.若圆台上下底面半径分别为r1和r2,母线长为l,球的表面积与体积分别为S1和V1,圆台的表面积与体积分别为S2和V2.则下列说法正确的是( )
A.B.
C.D.的最大值为
题型五空间几何体的体积
例9.(2023·山东烟台·统考二模)乐高积木是由丹麦的克里斯琴森发明的一种塑料积木,由它可以拼插出变化无穷的造型,组件多为组合体.某乐高拼插组件为底面边长为、高为的正四棱柱,中间挖去以底面正方形中心为底面圆的圆心、直径为、高为的圆柱,则该组件的体积为( ).(单位:)
A.B.C.D.
例10.(2023·上海闵行·上海市七宝中学校考二模)在中,,,,将绕边AB旋转一周,所得到几何体的体积为_________.
练习21.(2023·北京海淀·校考三模)公元前344年,先秦法家代表人物商鞅督造一种标准量器——商鞅铜方升,开创了秦朝统一度量衡的先河.如图,升体是长方体,手柄近似空心的圆柱.已知铜方升总长是,内口长,宽,高(忽略壁的厚度,取圆周率),若手柄的底面半径为,体积为,则铜方升的容积约为(小数点后保留一位有效数字)( )
A.B.C.D.
练习22.(2023·湖北·统考模拟预测)如图是某烘焙店家烘焙蛋糕时所用的圆台状模具,它的高为8cm,下底部直径为12cm,上面开口圆的直径为20cm,现用此模具烘焙一个跟模具完全一样的儿童蛋糕,若蛋糕膨胀成型后的体积会变为原来液态状态下体积的2倍(模具不发生变化),若用直径为10cm的圆柱形容量器取液态原料(不考虑损耗),则圆柱中需要注入液态原料的高度约为( )(单位:cm)
A.2.26B.10.45C.4.12D.4.61
练习23.(2023·广东佛山·校考模拟预测)如图,某圆柱体的高为,是该圆柱体的轴截面.已知从点出发沿着圆柱体的侧面到点的路径中,最短路径的长度为,则该圆柱体的体积是( )
A.3B.C.D.
练习24.(2023·福建福州·福州三中校考模拟预测)如图是一个圆台的侧面展开图(扇形的一部分),若扇形的两个圆弧所在圆的半径分别是1和3,且,则该圆台的体积为( )
A.B.C.D.
练习25.(2023春·四川广安·高二四川省广安友谊中学校考阶段练习)如图,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋中心(球心)与蛋巢底面的距离为______.
题型六截面问题
例11.(2023·江西·统考模拟预测)已知在长方体中,,点,,分别在棱,和上,且,,,则平面截长方体所得的截面形状为( )
A.三角形B.四边形C.五边形D.六边形
例12.(2023·河北唐山·统考二模)正方体的棱长为2,,分别为棱,的中点,过,,做该正方体的截面,则截面形状为______,周长为______.
练习26.(2022·全国·高三专题练习)作出平面与四棱锥的截面,截面多边形的边数为______.
练习27.(2023·全国·高三专题练习)(多选)用一个平面去截正方体,则截面可能是( )
A.直角三角形B.等边三角形C.正方形D.正六边形
练习28.(2023春·重庆渝中·高三重庆巴蜀中学校考期中)正方体的棱长为2,P为中点,过A,P,三点的平面截正方体为两部分,则截面图形的面积为( )
A.B.C.D.
练习29.(2023春·江苏盐城·高三江苏省响水中学校考期中)如图,在正方体中,的中点为Q,过A,Q,三点的截面是( )
A.三角形B.矩形C.菱形D.梯形
练习30.(2023·全国·高一专题练习)如图,正方体的棱长为2,E是侧棱的中点,则平面截正方体所得的截面图形的周长是________.
题型一
空间几何体的结构特征
题型二
斜二测画法
题型三
最短路径
题型四
空间几何体的表面积
题型五
空间几何体的体积
题型六
截面问题
相关试卷
这是一份2024年通用版高考数学二轮复习专题7.4 数列求和(学生版),共11页。试卷主要包含了设函数,设,,已知,则______.,设等比数列的前项和为,公比,.,已知数列满足,,已知数列满足等内容,欢迎下载使用。
这是一份2024年通用版高考数学二轮复习专题6.3 复数(学生版),共10页。
这是一份2024年通用版高考数学二轮复习专题4.9 导数综合练(学生版),共1页。