所属成套资源:全套人教A版高中数学必修第二册课时教学课件
人教A版高中数学必修第二册第八章立体几何初步习题课立体几何初步课件
展开
这是一份人教A版高中数学必修第二册第八章立体几何初步习题课立体几何初步课件,共41页。
综合考法(一) 空间几何体的表面积与体积[答案] (1)D (2)AC[方法技巧]与球相关问题的解题策略(1)作适当的截面(如轴截面等)时,对于球内接长方体、正方体,则截面一要过球心,二要过长方体或正方体的两条体对角线,才有利于解题.(2)对于“内切”和“外接”等问题,首先要弄清几何体之间的相互关系,主要是指特殊的点、线、面之间的关系,然后把相关的元素放到这些关系中来解决.4.(2023·新课标Ⅱ卷)底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为________.[方法技巧]1.平行、垂直关系的相互转化2.证明空间线面平行或垂直的三个注意点(1)由已知想性质,由求证想判定.(2)适当添加辅助线(或面)是解题的常用方法之一.(3)用定理时要先明确条件,再由定理得出相应结论.【集训冲关】1.若空间中四条两两不同的直线l1,l2,l3,l4满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是 ( )A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定证明:(1)因为ABC-A1B1C1是直三棱柱,所以CC1⊥平面ABC.又AD⊂平面ABC,所以CC1⊥AD.因为AD⊥DE,CC1⊂平面BCC1B1,DE⊂平面BCC1B1,CC1∩DE=E,所以AD⊥平面BCC1B1.因为AD⊂平面ADE,所以平面ADE⊥平面BCC1B1.(2)因为A1B1=A1C1,F为B1C1的中点,所以A1F⊥B1C1.因为CC1⊥平面A1B1C1,且A1F⊂平面A1B1C1,所以CC1⊥A1F.因为CC1⊂平面BCC1B1,B1C1⊂平面BCC1B1,CC1∩B1C1=C1,所以A1F⊥平面BCC1B1.由(1)知AD⊥平面BCC1B1,所以A1F∥AD.又因为AD⊂平面ADE,A1F⊄平面ADE,所以A1F∥平面ADE.[解] (1)证明:如图,过A1作A1D⊥CC1,垂足为D,∵A1C⊥平面ABC,BC⊂平面ABC,∴A1C⊥BC.又∠ACB=90°,∴AC⊥BC.∵A1C,AC⊂平面ACC1A1,且A1C∩AC=C,∴BC⊥平面ACC1A1.∵A1D⊂平面ACC1A1,∴BC⊥A1D.又CC1,BC⊂平面BCC1B1,且CC1∩BC=C,∴A1D⊥平面BCC1B1.∴A1D=1.由已知条件易证△CA1C1是直角三角形,又CC1=AA1=2,A1D=1,∴D为CC1的中点.又A1D⊥CC1,∴A1C=A1C1,又在三棱柱ABC-A1B1C1中,AC=A1C1,∴A1C=AC.[方法技巧]空间角的求法(1)找异面直线所成的角的三种方法:①利用图中已有的平行线平移;②利用特殊点(线段的端点或中点)作平行线平移;③补形平移.(2)线面角:求斜线与平面所成的角关键是找到斜线在平面内的射影,即确定过斜线上一点向平面所作垂线的垂足.通常是解由斜线段、垂线段、斜线在平面内的射影所组成的直角三角形.(3)二面角:利用几何体的特征作出所求二面角的平面角,再把该平面角转化到某三角形或其他平面图形中求解.解:(1)证明:如图,取AB的中点O,连接PO,CO.因为△PAB是等边三角形,所以PO⊥AB.又侧面PAB⊥底面ABCD,所以PO⊥底面ABCD.因为BD⊂平面ABCD,所以PO⊥BD.又AB=BC=2AD=2,∠ABC=∠DAB=90°,所以△DAB≌△OBC.所以∠BCO=∠ABD,所以BD⊥OC.又OC⊂平面POC,PO⊂平面POC,OC∩PO=O,所以BD⊥平面POC.因为PC⊂平面POC,所以BD⊥PC.[方法技巧]平面图形翻折为空间图形问题的解题关键是看翻折前后线面位置关系的变化,根据翻折的过程找到翻折前后线线位置关系中没有变化的量和发生变化的量,这些不变的和变化的量反映了翻折后的空间图形的结构特征.解决此类问题的步骤为