北京市第十五中学2023-2024学年七年级下学期期中数学试题(原卷版+解析版)
展开
这是一份北京市第十五中学2023-2024学年七年级下学期期中数学试题(原卷版+解析版),文件包含北京市第十五中学2023-2024学年七年级下学期期中数学试题原卷版docx、北京市第十五中学2023-2024学年七年级下学期期中数学试题解析版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。
1.本试卷共4页,四道大题.前三道大题共25道小题,满分100分.附加题满分10分,计入总分,但卷面总分不超过100分.考试时间100分钟.
2.在试卷和答题卡上准确填写班级、姓名和考号.
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.
4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答.
第一部分 选择题
一、选择题(共16分,每题2分)
第1−8题均有四个选项,符合题意的选项只有一个.
1. 在平面直角坐标系中,点(-1,-2)所在的象限是( )
A. 第一象限B. 第二象限C. 第三象限D. 第四象限
2. 在实数,,3.1415,中,无理数是( )
A. B. C. 3.1415D.
3. 若是方程的一个解,则的值为( )
A. 1B. C. 3D. 2
4. 下列命题中,是假命题的是( )
A. 如果两个角相等,那么它们是对顶角B. 同旁内角互补,两直线平行
C. 如果,,那么D. 负数没有平方根
5. 如图,一条数轴被污渍覆盖了一部分,把下列各数表示在数轴上,则被覆盖的数可能为( )
A. B. C. D.
6. 下列式子正确的是( )
A B. C. D.
7. 如图,纸片的边缘,互相平行,将纸片沿折叠,使得点B,D分别落在点,处.若,则的度数是( )
A. B. C. D.
8. 如图,在平面直角坐标系中,点的坐标为.线段以每秒旋转90°的速度,绕点沿顺时针方向连续旋转,同时,点从点出发,以每秒移动1个单位长度的速度,在线段上,按照…的路线循环运动,则第2023秒时点的坐标为( )
A B. C. D.
第二部分 非选择题
二、填空题(共16分,每题2分)
9. 16的算术平方根是___________.
10. 若,则_____________.
11 如图,直线与相交于点O,若,则_____________.
12. 在平面直角坐标系中,已知点P在第四象限,且点P到两坐标轴的距离相等,写出一个符合条件的点P的坐标:______.
13. 北京中轴线南起永定门,北至钟鼓楼,全长7.8千米.如图是利用平面直角坐标系画出的中轴线及其沿线部分地点分布图,若这个坐标系分别以正东、正北方向为轴、轴的正方向,表示天安门的点的坐标为,表示王府井的点的坐标为,则表示永定门的点的坐标为______.
14. 如图,一块边长为10米的正方形花园,在上面修了一条道路,路的宽都是1米,其余部分种上各种花草,则种植花草的面积是______平方米.
15. 已知点O为直线上一点,,于点O,平分,则______.
16. 小云计划户外徒步锻炼,每天有“低强度”“高强度”“休息”三种方案,下表对应了每天不同方案的徒步距离(单位:).若选择“高强度”要求前一天必须“休息”(第一天可选择“高强度”).则小云5天户外徒步锻炼的最远距离为_______.
三、解答题(共68分,第17题5分,第18、19题每题10分,第20题5分,第21题8分,第22、23题每题7分,第24、25题每题8分)
17. 计算:
18. 求下列各式中的x的值.
(1);
(2).
19. 解方程组:(1) (2)
20. 如图,已知点P在的边上.
(1)过点P作边的垂线l;
(2)过点P作边的垂线段;
(3)过点O作的平行线交l于点E,比较三条线段的大小,并用“>”连接得 ,得此结论的依据是 .
21. 补全下列推理过程:
如图,已知,求.
解:(已知)
(_______)
又(已知)
(_______)
(_______)
(_______)
(已知)
22. 在平面直角坐标系中,三角形的三个顶点坐标分别为,,.
(1)在所给的图中,画出这个平面直角坐标系;
(2)将三角形向右平移4个单位长度,然后再向上平移3个单位长度,可以得到三角形.画出平移后的三角形;
(3)计算三角形的面积是 ;
(4)已知点在y轴上,且三角形ACP的面积为3,直接写出P点的坐标为 .
23. 如图,∠1=∠EAB,∠E+∠2=180°.
(1)判断EF与AC的位置关系,并证明;
(2)若AC平分∠EAB,BF⊥EF于点F,∠EAB=60°,求∠BCD的度数.
24. 我国传统数学名著《九章算术》记载:“今有牛五、羊二,直金十九两;牛二、羊五,直金十六两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值19两银子;2头牛、5只羊,值16两银子,问每头牛、每只羊分别值银子多少两?”
根据以上译文,提出以下两个问题:
(1)求每头牛、每只羊各值多少两银子?
(2)若某商人准备用19两银子买牛和羊(要求既有牛也有羊,且银两须全部用完),请问商人有几种购买方法?列出所有的可能.
25. 在数学实践课上,老师让同学们借助“两条平行线,和一副直角三角尺”开展数学活动.
(1)如图①,小明把三角尺角的顶点放在直线上,.若,则_________;
(2)如图②,小颖把等腰直角三角尺两个锐角的顶点,分别放在直线,上,请用等式表示与之间满足的数量关系______________(不用证明);
(3)在图②的基础上,小亮把三角尺角的顶点放在点处,即.如图③,平分交直线于点,平分交直线于点.将含角的三角尺绕着点转动,且使始终在的内部,请问的值是否发生变化?若不变,求出它的值;若变化,说明理由.
附加题(共10分,第1题4分,第2题6分)
26. 对有序数对定义“运算”:,其中、为常数.运算的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的任意一点规定“变换”:点在F变换下的对应点即为坐标为的点.
(1)当,时,________________;
(2)若点在“F变换”下的对应点是,求、的值.
27. 在平面直角坐标系中,对于任意三点A,B,C的“矩面积”,给出如下定义:
“水平底”a为任意两点横坐标差的最大值,“铅垂高”h为任意两点纵坐标差的最大值,则“矩面积”.
已知:如图,.
(1)若点C坐标为,则A,B,C三点的“水平底”,“铅垂高”,“矩面积”__________;
(2)点P在x轴上,若A,B,P三点的“矩面积”为10,则点P的坐标为_______;
(3)点,
①若A,B,M三点的“矩面积”为8,直接写出满足题意的m的最大值;
②若,直接写出A,B,M三点的“矩面积”S的取值范围.
日期
第1天
第2天
第3天
第4天
第5天
低强度
8
6
6
5
4
高强度
12
13
15
12
8
休息
0
0
0
0
0
相关试卷
这是一份北京市第一六一中学 2023-2024学年七年级下学期期中数学试题(原卷版+解析版),文件包含北京市第一六一中学2023-2024学年七年级下学期期中数学试题原卷版docx、北京市第一六一中学2023-2024学年七年级下学期期中数学试题解析版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
这是一份北京市第七中学2023-2024学年七年级下学期期中数学试题(原卷版+解析版),文件包含北京市第七中学2023-2024学年七年级下学期期中数学试题原卷版docx、北京市第七中学2023-2024学年七年级下学期期中数学试题解析版docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。
这是一份北京市师达中学2023-2024学年八年级下学期期中数学试题(原卷版+解析版),文件包含北京市师达中学2023-2024学年八年级下学期期中数学试题原卷版docx、北京市师达中学2023-2024学年八年级下学期期中数学试题解析版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。