年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2024年高考押题预测卷—数学(九省新高考新结构卷01)(参考答案)

    立即下载
    加入资料篮
    2024年高考押题预测卷—数学(九省新高考新结构卷01)(参考答案)第1页
    2024年高考押题预测卷—数学(九省新高考新结构卷01)(参考答案)第2页
    2024年高考押题预测卷—数学(九省新高考新结构卷01)(参考答案)第3页
    还剩5页未读, 继续阅读
    下载需要40学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年高考押题预测卷—数学(九省新高考新结构卷01)(参考答案)

    展开

    这是一份2024年高考押题预测卷—数学(九省新高考新结构卷01)(参考答案),共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    第一部分(选择题 共58分)
    一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。
    二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
    第二部分(非选择题 共92分)
    三、填空题:本题共3小题,每小题5分,共15分。
    13.14.15.
    四、解答题:本题共5小题,共77分。解答应写出文字说明、证明过程或演算步棸。
    15.(本小题满分13分)
    【解】(1)由题知:各组频率分别为:0.15,0.25,0.3,0.2,0.1,
    日均阅读时间的平均数为:
    (分钟)
    (2)由题意,在[60,80),[80,100),[100,120]三组分别抽取3,2,1人
    的可能取值为:0,1,2

    所以的分布列为:
    16.(本小题满分15分)
    【解】(1)取棱中点D,连接,因为,所以
    因为三棱柱,所以,
    所以,所以
    因为,所以,;
    因为,,所以,所以,
    同理,
    因为,且,平面,所以平面,
    因为平面,
    所以平面平面;
    (2)
    取中点O,连接,取中点P,连接,则,
    由(1)知平面,所以平面
    因为平面,平面,
    所以,,
    因为,则
    以O为坐标原点,,,所在的直线为x轴、y轴、z轴,建立如图所示的空间直角坐标系,
    则,,,,
    可设点,,
    ,,,
    设面的法向量为,得,
    取,则,,所以
    设直线与平面所成角为,

    若,则,
    若,则,
    当且仅当,即时,等号成立,
    所以直线与平面所成角的正弦值的最大值.
    17.(本小题满分15分)
    【解】(1)当时,定义域为,
    又,
    所以,
    由,解得,此时单调递增;
    由,解得,此时单调递减,
    所以的单调递增区间为,单调递减区间为.
    (2)函数的定义域为,
    由题意知,,
    当时,,所以在上单调递增,
    即极值点的个数为个;
    当时,易知,
    故解关于的方程得,,,
    所以,
    又,,
    所以当时,,即在上单调递增,
    当时,,即在上单调递减,
    即极值点的个数为个.
    综上,当时,极值点的个数为个;当时,极值点的个数为个.
    18.(本小题满分17分)
    【解】(1)由题意,当直线垂直于轴时,,代入抛物线方程得,则,所以,即,所以抛物线.
    (2)(i)设,,直线,
    与抛物线联立,得,因此,.
    设直线,与抛物线联立,得,
    因此,,则.同理可得.
    所以.
    因此直线,由对称性知,定点在轴上,
    令得,

    所以直线过定点.
    (ii)因为,

    所以,
    当且仅当时取到最小值.
    19.(本小题满分17分)
    【解】(1)对于集合A:因为,所以集合A不是规范数集;
    对于集合B:因为,
    又,,,,,,
    所以B相伴数集,即,故集合B是规范数集.
    (2)不妨设集合S中的元素为,即,
    因为S为规范数集,则,则,且,使得,
    当时,
    则,
    当且仅当且时,等号成立;
    当时,
    则,
    当且仅当且时,等号成立;
    当时,
    则,
    当且仅当时,等号成立;
    综上所述:.
    (3)法一:
    不妨设,
    因为S为规范数集,则,则,且,使得,
    当时,
    则当时,可得,
    当且仅当时,等号成立,
    则范数,
    当且仅当时,等号成立,
    又,
    当且仅当时,等号成立,
    故,即范数的最小值;
    当时,
    则当时,可得,
    当且仅当时,等号成立,则,
    则范数,
    当且仅当时,等号成立,


    当且仅当时,等号成立,
    故,即范数的最小值;
    当,使得,且,
    当,即,即时,
    则当时,可得,
    当且仅当时,等号成立,
    则当时,可得,
    当且仅当时,等号成立,
    则范数

    对于,其开口向上,对称轴为,
    所以,
    所以范数的最小值为;
    当,即,即时,
    则当时,可得,
    当且仅当时,等号成立,
    则当时,可得,
    当且仅当时,等号成立,
    则范数

    对于,其开口向上,对称轴为,
    所以,
    所以范数;
    综上所述:范数的最小值.
    法二:不妨设,
    因为S为规范数集,则,则,且,使得,
    所以对于,同样有,则,
    由(2)的证明过程与结论可得,,当且仅当时,等号成立,
    即,,……,
    所以范数

    当且仅当时,等号成立,
    所以范数的最小值.
    1
    2
    3
    4
    5
    6
    7
    8
    A
    B
    A
    D
    A
    B
    C
    D
    9
    10
    11
    AB
    BCD
    AD
    0
    1
    2

    相关试卷

    2024年高考押题预测卷—数学(广东专用01,新题型结构)(参考答案):

    这是一份2024年高考押题预测卷—数学(广东专用01,新题型结构)(参考答案),共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江西省(九省新高考新结构卷)2024年高考押题预测数学试卷03(Word版附答案):

    这是一份江西省(九省新高考新结构卷)2024年高考押题预测数学试卷03(Word版附答案),文件包含数学全解全析docx、数学参考答案docx、数学考试版A4docx、数学答题卡docx、数学考试版A3docx等5份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。

    2024年高考数学押题预测卷(九省新高考新结构卷02)含参考答案及答题卡:

    这是一份2024年高考数学押题预测卷(九省新高考新结构卷02)含参考答案及答题卡,文件包含数学九省新高考新结构卷02全解全析docx、数学九省新高考新结构卷02参考答案docx、数学九省新高考新结构卷02考试版A4docx、数学九省新高考新结构卷02答题卡docx、数学九省新高考新结构卷02考试版A3docx、数学九省新高考新结构卷02答题卡pdf等6份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map