年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2024年高考押题预测卷—数学(天津卷01)(全解全析)

    2024年高考押题预测卷—数学(天津卷01)(全解全析)第1页
    2024年高考押题预测卷—数学(天津卷01)(全解全析)第2页
    2024年高考押题预测卷—数学(天津卷01)(全解全析)第3页
    还剩11页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年高考押题预测卷—数学(天津卷01)(全解全析)

    展开

    这是一份2024年高考押题预测卷—数学(天津卷01)(全解全析),共14页。试卷主要包含了单项选择题,填空题,解答题等内容,欢迎下载使用。
    一、单项选择题(本题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的)
    1.设全集,集合,则( )
    A.B.C.D.
    【答案】A
    【解析】因为全集,集合,所以,
    又,所以,故选A.
    2.已知,则( )
    A.p是q的充分不必要条件B.p是q的充要条件
    C.q是p的必要不充分条件D.q是p的充分不必要条件
    【答案】D
    【解析】由题得.
    当命题成立时,命题不一定成立,所以p是q的非充分条件,q是p的非必要条件;
    当命题成立时,命题一定成立,所以p是q的必要条件,q是p的充分条件.
    所以p是q的必要非充分条件,q是p的充分非必要条件,故选D
    3.已知,,,则( )
    A.B.C.D.
    【答案】B
    【解析】函数为上的减函数,又,
    所以,故;
    函数为上的减函数,又,
    所以,故;
    函数为上的增函数,又,
    所以,故;
    所以,故选B.
    4.已知函数的部分图象如图所示,则此函数的解析式可能是( )
    A.B.
    C.D.
    【答案】C
    【解析】对于A,,
    又的定义域为,
    为上的奇函数,图象关于原点对称,与已知图象相符;
    当时,为增函数,为增函数,又在上单调递增,
    由复合函数单调性可知:在上单调递增,
    又,
    在上单调递减,与已知图象不符,A错误;
    对于B,由得:,的定义域为,与已知图象不符,B错误;
    对于D,,
    不是奇函数,图象不关于原点对称,与已知图象不符,D错误.
    故选:C.
    5.已知等比数列的前项和,满足,则( )
    A.16B.32C.81D.243
    【答案】A
    【解析】等比数列的前项和为,且,
    ∴,
    ∴,∴,故等比数列的公比为.
    在中,
    令,可得,∴,则,故选A.
    6.已知函数的最大值为4,最小值为0,最小正周期为,直线是其图象的一条对称轴,则符合条件的函数解析式可以是 ( )
    A.B.
    C.D.
    【答案】B
    【解析】∵函数y=Asin(ωx+φ)+m的最大值是4,最小值是0,
    ∴A==2,m==2,∵
    ∵直线x=是其图象的一条对称轴, 所以
    φ=-+kπ,k∈Z∴函数的解析式为y=2sin(4x-+kπ)+2,k∈Z,
    可以为,故选B
    7.下列说法正确的是( )
    A.一组数据的第80百分位数为17;
    B.根据分类变量与的成对样本数据,计算得到,根据小概率值的独立性检验,可判断与有关联,此推断犯错误的概率不大于0.05;
    C.两个随机变量的线性相关性越强,相关系数的绝对值越接近于0;
    D.若随机变量满足,则.
    【答案】B
    【解析】A选项,,故从小到大排列,第8个数和第9个数的平均数作为第80百分位数,
    即,A错误;
    B选项,由于,得到与有关联,此推断犯错误的概率不大于0.05,B正确;
    C选项,两个随机变量的线性相关性越强,相关系数的绝对值越接近于1,C错误;
    D选项,若随机变量满足,则,D错误.
    故选:B
    8.在炎热的夏天里,人们都喜欢在饮品里放冰块.如图是一个高脚杯,它的轴截面是正三角形,容器内有一定量的水.若在高脚杯内放入一个球形冰块后,冰块没有开始融化前水面所在的平面恰好经过冰块的球心(水没有溢出),则原来高脚杯内水的体积与球的体积之比是( )
    A.1B.C.D.
    【答案】D
    【解析】如图,圆与AB切于点D,设球的半径为,
    则,且,
    有,即,得,
    所以水的体积,
    所以水的体积与球的体积之比是,故选D.
    9.已知双曲线的左、右焦点分别为,,点M在双曲线C的右支上,,若与C的一条渐近线l垂直,垂足为N,且,其中O为坐标原点,则双曲线C的标准方程为( )
    A.B.
    C.D.
    【答案】C
    【解析】因为,,且为中点,所以,且,
    因为,所以,解得,
    直线l的方程为,所以,则,在直角三角形中利用勾股定理得,解得,所以双曲线的标准方程为,故选C.
    二、填空题:本题共6小题,每小题5分,共30分.
    10.i是虚数单位,复数 .
    【答案】
    【解析】,
    11.的展开式中的系数为 .
    【答案】
    【解析】的展开式的通项,
    令,得,所以的展开式中的系数为.
    12.已知过原点O的一条直线l与圆C:相切,且l与抛物线交于O,P两点,若,则 .
    【答案】3
    【解析】由于圆心为,半径为,故直线一定有斜率,
    设方程为,则,解得,
    故直线方程为,
    联立与可得或,
    故,故,
    13.有两台车床加工同一型号的零件,第一台车床加工的优秀率为15%,第二台车床加工的优秀率为10%.假定两台车床加工的优秀率互不影响,则两台车床加工零件,同时出现优秀品的概率为 ;若把加工出来的零件混放在一起,已知第一台车床加工的零件数占总数的60%,第二台车床加工的零件数占总数的40%,现任取一个零件,则它是优秀品的概率为 .
    【答案】
    【解析】由于第一台车床加工的优秀率为15%,第二台车床加工的优秀率为10%,所以两台车床加工零件,同时出现优秀品的概率为
    记 “加工的零件为优秀品”, “零件为第1台车床加工“, “零件为第2台车床加工“,,,,,
    由全概率公式可得,
    14.如图,平行四边形中,,,,,设,,用,表示 , .
    【答案】 ;
    【解析】空一:因为,
    所以;
    空二:因为,
    所以,
    因此,
    因为,,,所以,
    所以,
    15.已知函数有且仅有2个零点,则实数的取值范围为 .
    【答案】
    【解析】(1)当,即时,
    恒成立,
    所以,
    因为有两个零点,
    所以且,解得或(舍),
    所以或;
    (2)当,即或,
    设的两个根为,且,
    当时,恒成立,不满足题意,
    当,有有两个解,
    因为,,所以与在必有一个交点,
    当时,与没有交点,
    当时,,所以与在必有一个交点
    所以要使方程有且只有两个零点,
    则无解,
    即没有实数根,
    即,解得,
    因为,所以,
    综上实数的取值范围为:.
    三、解答题:本题共5小题,共75分.解答应写出文字说明、证明过程或演算步骤.
    16.(本小题满分14分)在非等腰中,,,分别是三个内角,,的对边,且,,.
    (1)求的值;
    (2)求的周长;
    (3)求的值.
    【解】(1)在中,由正弦定理,,,
    可得,
    因为,所以,即,
    显然,解得.
    (2)在中,由余弦定理,
    得,解得或.
    由已知,,互不相等,所以,
    所以.
    (3)因为,所以,
    所以,,
    所以.
    17.(本小题满分15分)如图,四棱锥中,,平面平面,,为的中点.
    (1)求证平面;
    (2)求点到面的距离
    (3)求二面角平面角的正弦值
    【解】(1)取中点,连接,如图
    由为的中点,所以//且
    又,且,
    所以//且,
    故//且,
    所以四变形为平行四边形,故//
    又平面,平面
    所以//平面
    (2)由,平面
    平面平面,
    平面平面
    所以平面,又平面
    所以,由,
    所以为正三角形,所以
    则平面
    所以平面,且
    所以点到面的距离即
    (3)作交于点,
    作交于点,连接
    由平面平面,平面平面
    平面平面,
    所以平面,平面,
    所以,又
    平面,所以平面
    又平面,所以
    所以二面角平面角为
    ,又为等腰直角三角形
    所以,所以
    所以
    又二面角平面角为

    所以二面角平面角的正弦值为
    18.(本小题满分15分)已知椭圆:,其离心率为,若,分别为的左、右焦点,轴上方一点在椭圆上,且满足,.
    (1)求的方程;
    (2)过点的直线交于另一点,点与点关于轴对称,直线交轴于点,若的面积是的面积的2倍,求直线的方程.
    【解】(1)解:因为,所以,且
    又,所以,
    即,即,所以,
    又离心率,所以,,所以,
    所以椭圆方程为;
    (2)解:由(1)可得点的坐标为,
    依题意直线的斜率存在,设直线的方程为,
    由消去整理得,解得或,
    所以点坐标为,
    从而点坐标为,
    所以直线的方程为,
    则点的坐标为,
    因为的面积是的面积的2倍,
    所以或,
    当时,即,解得,所以直线的方程为;
    当时,即,解得,所以直线的方程为;
    所以满足条件的直线的方程为,
    19.(本小题满分15分)若某类数列满足“,且”,则称这个数列为“型数列”.
    (1)若数列满足,求的值并证明:数列是“型数列”;
    (2)若数列的各项均为正整数,且为“型数列”,记,数列为等比数列,公比为正整数,当不是“型数列”时,
    (i)求数列的通项公式;
    (ii)求证:.
    【解】(1),令,则,
    令,则;由①,
    当时,②,
    由①②得,当时,,
    所以数列和数列是等比数列.
    因为,所以,
    所以,因此,
    从而,所以数列是“型数列”.
    (2)(i)因为数列的各项均为正整数,且为“G型数列”,
    所以,所以,因此数列递增.又,
    所以,因此递增,
    所以公比.又不是“型数列”,所以存在,
    使得,所以,又公比为正整数,
    所以,又,所以,则.
    (ii),
    因为,所以,
    所以,令,当时,,
    当时,
    20.(本小题满分16分)设函数.
    (1)求曲线在点处的切线方程;
    (2)设函数
    (i)当时,取得极值,求的单调区间;
    (ii)若存在两个极值点,证明:.
    【解】(1),
    则,
    所以曲线在点处的切线方程为,即;
    (2)(i),

    ∵时,取得极值,∴,解得,
    ∴,
    令,得或;令,得,
    ∴的单调增区间为,,单调减区间为;
    (ii),
    ∵存在两个极值点,
    ∴方程,即在上有两个不等实根.
    ∵,解得,

    ∴所证不等式等价于,
    即,
    不妨设,即证,
    令,,
    则,
    ∴在上递增,∴,
    ∴成立,
    ∴.

    相关试卷

    2024年高考押题预测卷—数学(天津卷03)(全解全析):

    这是一份2024年高考押题预测卷—数学(天津卷03)(全解全析),共13页。试卷主要包含了单项选择题,填空题,解答题等内容,欢迎下载使用。

    2024年高考押题预测卷—数学(北京卷01)(全解全析):

    这是一份2024年高考押题预测卷—数学(北京卷01)(全解全析),共14页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年高考押题预测卷03(天津卷)-数学(全解全析):

    这是一份2023年高考押题预测卷03(天津卷)-数学(全解全析),共18页。试卷主要包含了本试卷分第Ⅰ卷两部分,已知双曲线C,是虚数单位,数,则______等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map