还剩3页未读,
继续阅读
鲁科版高中物理选择性必修第一册第1章章末综合提升学案
展开
这是一份鲁科版高中物理选择性必修第一册第1章章末综合提升学案,共5页。
主题1 碰撞与爆炸问题爆炸与碰撞的比较【典例1】 一质量为m的烟花弹获得动能E后,从地面竖直升空.当烟花弹上升的速度为零时,弹中火药爆炸将烟花弹炸为质量相等的两部分,两部分获得的动能之和也为E,且均沿竖直方向运动.爆炸时间极短,重力加速度大小为g,不计空气阻力和火药的质量.求:(1)烟花弹从地面开始上升到弹中火药爆炸所经过的时间;(2)爆炸后烟花弹向上运动的部分距地面的最大高度.[解析] (1)设烟花弹上升的初速度为v0,由题给条件有E=eq \f(1,2)mveq \o\al( 2,0) ①设烟花弹从地面开始上升到火药爆炸所用的时间为t,由运动学公式有0-v0=-gt ②联立①②式得t=eq \f(1,g)eq \r(\f(2E,m)). ③(2)设爆炸时烟花弹距地面的高度为h1,由机械能守恒定律有E=mgh1 ④火药爆炸后,烟花弹上、下两部分均沿竖直方向运动,设爆炸后瞬间其速度分别为v1和v2.根据题意和动量守恒定律有eq \f(1,4)mveq \o\al( 2,1)+eq \f(1,4)mveq \o\al( 2,2)=E ⑤eq \f(1,2)mv1+eq \f(1,2)mv2=0 ⑥由⑥式知,烟花弹两部分的速度方向相反,向上运动部分做竖直上抛运动.设爆炸后烟花弹向上运动部分继续上升的高度为h2,由机械能守恒定律有eq \f(1,4)mveq \o\al( 2,1)=eq \f(1,2)mgh2 ⑦联立④⑤⑥⑦式得,烟花弹向上运动部分距地面的最大高度为h=h1+h2=eq \f(2E,mg).[答案] (1)eq \f(1,g)eq \r(\f(2E,m)) (2)eq \f(2E,mg)爆炸过程和碰撞过程都可认为是系统动量守恒,但是爆炸过程动能增加,碰撞过程动能不增加,只有理想化的弹性碰撞认为动能不变,而一般情况下系统动能都是减少的. 主题2 多体问题及临界问题1.多体问题对于两个以上的物体组成的系统,由于物体较多,相互作用的情况也不尽相同,作用过程较为复杂,虽然仍可对初、末状态建立动量守恒的关系式,但因未知条件过多而无法求解,这时往往要根据作用过程中的不同阶段,建立多个动量守恒的方程,或将系统内的物体按相互作用的关系分成几个小系统,分别建立动量守恒的方程.2.临界问题在动量守恒定律的应用中,常常会遇到相互作用的两物体相距最近、避免相碰和物体开始反向运动等临界问题.这类问题的求解关键是充分利用反证法、极限法分析物体的临界状态,挖掘问题中隐含的临界条件,选取适当的系统和过程,运用动量守恒定律进行解答.【典例2】 甲、乙两小船质量均为M=120 kg,静止于水面上,甲船上的人质量m=60 kg,通过一根长为L=10 m的绳用F=120 N的力水平拉乙船,求:(1)两船相遇时,两船分别走了多少距离;(2)为防止两船相撞,人至少以多大的速度跳到乙船(忽略水的阻力).[解析] (1)由水平方向动量守恒得(M+m)eq \f(x甲,t)=Meq \f(x乙,t) ①x甲+x乙=L ②联立①②并代入数据解得x甲=4 m,x乙=6 m.(2)设相遇时甲船和人共同速度为v1,人跳离甲船速度为v.为了防止两船相撞,人跳后至少需甲、乙船均停下,对人和甲船组成的系统由动量守恒定律得(M+m)v1=0+mv ③对甲船和人由动能定理得Fx甲=eq \f(1,2)(M+m)veq \o\al( 2,1) ④联立解得v=4eq \r(3) m/s.[答案] (1)4 m 6 m (2)4eq \r(3) m/s(1)“人船模型”对于系统初动量为零,动量时刻守恒的情况均适用.(2)两物体不相撞的临界条件是:两物体运动的速度方向相同,大小相等. 主题3 动量和其他力学知识的综合问题运用牛顿运动定律、动量、能量的观点解题是解决动力学问题的三条重要途径.求解这类问题时要注意正确选取对象、状态、过程,并恰当选择物理规律.在分析的基础上选用适宜的物理规律来解题,选用规律也有一定的原则.1.牛顿运动定律(力的观点)研究某一时刻(或某一位置)的动力学问题应使用牛顿第二定律,研究某一个恒力作用过程的动力学问题,且又直接涉及物体的加速度问题,应使用运动学公式和牛顿第二定律求解.如:物体在拉力和摩擦力作用下沿水平面运动瞬间的牛顿第二定律方程:F-f=ma.物体沿轨道在竖直面内做圆周运动,最低点的向心力方程:N-mg=eq \f(mv2,R).2.动量定理和动量守恒定律(动量观点)(1)对于不涉及物体运动过程中的加速度而涉及物体运动时间的问题,特别对于打击一类的问题,因时间短且冲力随时间变化,则应用动量定理求解,Ft=mv-mv0.(2)对于碰撞、爆炸、反冲一类的问题,若只涉及初、末速度而不涉及力、时间的,应用动量守恒定律求解.3.动能定理和能量守恒定律(能量观点)(1)对于不涉及物体运动过程中的加速度和时间问题,无论是恒力做功还是变力做功,一般都利用动能定理求解.(2)如果物体只有重力和弹簧弹力做功而又不涉及运动过程的加速度和时间问题,则采用机械能守恒定律求解.(3)对于相互作用的两物体,若明确两物体相对滑动的距离,应考虑选用能量守恒定律建立方程.【典例3】 如图所示,水平地面上静止放置一辆小车A,质量mA=4 kg,上表面光滑,小车与地面间的摩擦力极小,可以忽略不计.可视为质点的物块B置于A的最右端,B的质量mB=2 kg.现对A施加一个水平向右的恒力F=10 N,A运动一段时间后,小车左端固定的挡板与B发生碰撞,碰撞时间极短,碰后A、B粘在一起,共同在F的作用下继续运动,碰撞后经时间t=0.6 s,二者的速度达到vt=2 m/s.求:(1)A开始运动时加速度a的大小;(2)A、B碰撞后瞬间的共同速度v的大小;(3)A的上表面长度l.[解析] (1)以小车A为研究对象,由牛顿第二定律有F=mAa,代入数据解得a=2.5 m/s2.(2)对小车A和物块B碰撞后共同运动t=0.6 s的过程,由动量定理得Ft=(mA+mB)vt-(mA+mB)v代入数据解得v=1 m/s.(3)设小车A和物块B发生碰撞前,小车A的速度为vA,对小车A和物块B发生碰撞的过程,由动量守恒定律有mAvA=(mA+mB)v小车A从开始运动到与物块B发生碰撞前,由动能定理有Fl=eq \f(1,2)mAveq \o\al( 2,A)代入数据解得l=0.45 m.[答案] (1)2.5 m/s2 (2)1 m/s (3)0.45 m综合应用力学“三大观点”解题的步骤(1)认真审题,明确题目所述的物理情境,确定研究对象.(2)分析所选研究对象的受力情况及运动状态和运动状态的变化过程,画出草图.对于过程复杂的问题,要正确、合理地把全过程分成若干阶段,注意分析各阶段之间的联系.(3)根据各阶段状态变化的规律确定解题方法,选择合理的规律列方程,有时还要分析题目的隐含条件、临界条件、几何关系等列出辅助方程.(4)代入数据(统一单位),计算结果,必要时要对结果进行讨论.比较项目爆炸碰撞相同点过程特点都是物体间的相互作用突然发生,相互作用的力为变力,作用时间很短,平均作用力很大,且远大于系统所受的外力,所以可以认为碰撞、爆炸过程中系统的总动量守恒过程模型由于碰撞、爆炸过程相互作用的时间很短,作用过程中物体的位移很小,一般可忽略不计,因此可以把作用过程看作一个理想化过程来处理,即作用后物体仍从作用前瞬间的位置以新的动量开始能量情况都满足能量守恒,总能量保持不变不同点动能情况有其他形式的能转化为动能,动能会增加弹性碰撞时动能不变,非弹性碰撞时动能有损失,动能转化为内能
主题1 碰撞与爆炸问题爆炸与碰撞的比较【典例1】 一质量为m的烟花弹获得动能E后,从地面竖直升空.当烟花弹上升的速度为零时,弹中火药爆炸将烟花弹炸为质量相等的两部分,两部分获得的动能之和也为E,且均沿竖直方向运动.爆炸时间极短,重力加速度大小为g,不计空气阻力和火药的质量.求:(1)烟花弹从地面开始上升到弹中火药爆炸所经过的时间;(2)爆炸后烟花弹向上运动的部分距地面的最大高度.[解析] (1)设烟花弹上升的初速度为v0,由题给条件有E=eq \f(1,2)mveq \o\al( 2,0) ①设烟花弹从地面开始上升到火药爆炸所用的时间为t,由运动学公式有0-v0=-gt ②联立①②式得t=eq \f(1,g)eq \r(\f(2E,m)). ③(2)设爆炸时烟花弹距地面的高度为h1,由机械能守恒定律有E=mgh1 ④火药爆炸后,烟花弹上、下两部分均沿竖直方向运动,设爆炸后瞬间其速度分别为v1和v2.根据题意和动量守恒定律有eq \f(1,4)mveq \o\al( 2,1)+eq \f(1,4)mveq \o\al( 2,2)=E ⑤eq \f(1,2)mv1+eq \f(1,2)mv2=0 ⑥由⑥式知,烟花弹两部分的速度方向相反,向上运动部分做竖直上抛运动.设爆炸后烟花弹向上运动部分继续上升的高度为h2,由机械能守恒定律有eq \f(1,4)mveq \o\al( 2,1)=eq \f(1,2)mgh2 ⑦联立④⑤⑥⑦式得,烟花弹向上运动部分距地面的最大高度为h=h1+h2=eq \f(2E,mg).[答案] (1)eq \f(1,g)eq \r(\f(2E,m)) (2)eq \f(2E,mg)爆炸过程和碰撞过程都可认为是系统动量守恒,但是爆炸过程动能增加,碰撞过程动能不增加,只有理想化的弹性碰撞认为动能不变,而一般情况下系统动能都是减少的. 主题2 多体问题及临界问题1.多体问题对于两个以上的物体组成的系统,由于物体较多,相互作用的情况也不尽相同,作用过程较为复杂,虽然仍可对初、末状态建立动量守恒的关系式,但因未知条件过多而无法求解,这时往往要根据作用过程中的不同阶段,建立多个动量守恒的方程,或将系统内的物体按相互作用的关系分成几个小系统,分别建立动量守恒的方程.2.临界问题在动量守恒定律的应用中,常常会遇到相互作用的两物体相距最近、避免相碰和物体开始反向运动等临界问题.这类问题的求解关键是充分利用反证法、极限法分析物体的临界状态,挖掘问题中隐含的临界条件,选取适当的系统和过程,运用动量守恒定律进行解答.【典例2】 甲、乙两小船质量均为M=120 kg,静止于水面上,甲船上的人质量m=60 kg,通过一根长为L=10 m的绳用F=120 N的力水平拉乙船,求:(1)两船相遇时,两船分别走了多少距离;(2)为防止两船相撞,人至少以多大的速度跳到乙船(忽略水的阻力).[解析] (1)由水平方向动量守恒得(M+m)eq \f(x甲,t)=Meq \f(x乙,t) ①x甲+x乙=L ②联立①②并代入数据解得x甲=4 m,x乙=6 m.(2)设相遇时甲船和人共同速度为v1,人跳离甲船速度为v.为了防止两船相撞,人跳后至少需甲、乙船均停下,对人和甲船组成的系统由动量守恒定律得(M+m)v1=0+mv ③对甲船和人由动能定理得Fx甲=eq \f(1,2)(M+m)veq \o\al( 2,1) ④联立解得v=4eq \r(3) m/s.[答案] (1)4 m 6 m (2)4eq \r(3) m/s(1)“人船模型”对于系统初动量为零,动量时刻守恒的情况均适用.(2)两物体不相撞的临界条件是:两物体运动的速度方向相同,大小相等. 主题3 动量和其他力学知识的综合问题运用牛顿运动定律、动量、能量的观点解题是解决动力学问题的三条重要途径.求解这类问题时要注意正确选取对象、状态、过程,并恰当选择物理规律.在分析的基础上选用适宜的物理规律来解题,选用规律也有一定的原则.1.牛顿运动定律(力的观点)研究某一时刻(或某一位置)的动力学问题应使用牛顿第二定律,研究某一个恒力作用过程的动力学问题,且又直接涉及物体的加速度问题,应使用运动学公式和牛顿第二定律求解.如:物体在拉力和摩擦力作用下沿水平面运动瞬间的牛顿第二定律方程:F-f=ma.物体沿轨道在竖直面内做圆周运动,最低点的向心力方程:N-mg=eq \f(mv2,R).2.动量定理和动量守恒定律(动量观点)(1)对于不涉及物体运动过程中的加速度而涉及物体运动时间的问题,特别对于打击一类的问题,因时间短且冲力随时间变化,则应用动量定理求解,Ft=mv-mv0.(2)对于碰撞、爆炸、反冲一类的问题,若只涉及初、末速度而不涉及力、时间的,应用动量守恒定律求解.3.动能定理和能量守恒定律(能量观点)(1)对于不涉及物体运动过程中的加速度和时间问题,无论是恒力做功还是变力做功,一般都利用动能定理求解.(2)如果物体只有重力和弹簧弹力做功而又不涉及运动过程的加速度和时间问题,则采用机械能守恒定律求解.(3)对于相互作用的两物体,若明确两物体相对滑动的距离,应考虑选用能量守恒定律建立方程.【典例3】 如图所示,水平地面上静止放置一辆小车A,质量mA=4 kg,上表面光滑,小车与地面间的摩擦力极小,可以忽略不计.可视为质点的物块B置于A的最右端,B的质量mB=2 kg.现对A施加一个水平向右的恒力F=10 N,A运动一段时间后,小车左端固定的挡板与B发生碰撞,碰撞时间极短,碰后A、B粘在一起,共同在F的作用下继续运动,碰撞后经时间t=0.6 s,二者的速度达到vt=2 m/s.求:(1)A开始运动时加速度a的大小;(2)A、B碰撞后瞬间的共同速度v的大小;(3)A的上表面长度l.[解析] (1)以小车A为研究对象,由牛顿第二定律有F=mAa,代入数据解得a=2.5 m/s2.(2)对小车A和物块B碰撞后共同运动t=0.6 s的过程,由动量定理得Ft=(mA+mB)vt-(mA+mB)v代入数据解得v=1 m/s.(3)设小车A和物块B发生碰撞前,小车A的速度为vA,对小车A和物块B发生碰撞的过程,由动量守恒定律有mAvA=(mA+mB)v小车A从开始运动到与物块B发生碰撞前,由动能定理有Fl=eq \f(1,2)mAveq \o\al( 2,A)代入数据解得l=0.45 m.[答案] (1)2.5 m/s2 (2)1 m/s (3)0.45 m综合应用力学“三大观点”解题的步骤(1)认真审题,明确题目所述的物理情境,确定研究对象.(2)分析所选研究对象的受力情况及运动状态和运动状态的变化过程,画出草图.对于过程复杂的问题,要正确、合理地把全过程分成若干阶段,注意分析各阶段之间的联系.(3)根据各阶段状态变化的规律确定解题方法,选择合理的规律列方程,有时还要分析题目的隐含条件、临界条件、几何关系等列出辅助方程.(4)代入数据(统一单位),计算结果,必要时要对结果进行讨论.比较项目爆炸碰撞相同点过程特点都是物体间的相互作用突然发生,相互作用的力为变力,作用时间很短,平均作用力很大,且远大于系统所受的外力,所以可以认为碰撞、爆炸过程中系统的总动量守恒过程模型由于碰撞、爆炸过程相互作用的时间很短,作用过程中物体的位移很小,一般可忽略不计,因此可以把作用过程看作一个理想化过程来处理,即作用后物体仍从作用前瞬间的位置以新的动量开始能量情况都满足能量守恒,总能量保持不变不同点动能情况有其他形式的能转化为动能,动能会增加弹性碰撞时动能不变,非弹性碰撞时动能有损失,动能转化为内能
相关资料
更多