所属成套资源:挑战2023年中考数学压轴题秘笈大揭秘(全国通用)
专题1二次函数与等腰三角形问题(学生版)-拔尖2023中考数学压轴题突破(全国通用)
展开这是一份专题1二次函数与等腰三角形问题(学生版)-拔尖2023中考数学压轴题突破(全国通用),共15页。
数学因运动而充满活力,数学因变化而精彩纷呈,动态几何问题是近年来中考的热点问题,以运动的观点来探究几何图形的变化规律问题,动态问题的解答,一般要将动态问题转化为静态问题,抓住运动过程中的不变量,利用不变的关系和几何性质建立关于方程(组)、函数关系问题,将几何问题转化为代数问题。
在动态问题中,动点形成的等腰三角形问题是常见的一类题型,可以与旋转、平移、对称等几何变化相结合,也可以与一次函数、反比例函数、二次函数的图象相结合,从而产生数与形的完美结合.解决动点产生的等腰三角形问题的重点和难点在于应用分类讨论思想和数形结合思想进行准确的分类.
在讨论等腰三角形的存在性问题时,一般都要先分类.
如果△ABC是等腰三角形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.
解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快.
几何法一般分三步:分类、画图、计算.哪些题目适合用几何法呢?
如果△ABC的∠A(的余弦值)是确定的,夹∠A的两边AB和AC可以用含x的式子表示出来,那么就用几何法.
①如图1,如果AB=AC,直接列方程;②如图2,如果BA=BC,那么;③如图3,如果CA=CB,那么.
图1 图2 图3
代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.
如果三角形的三个角都是不确定的,而三个顶点的坐标可以用含x的式子表示出来,那么根据两点间的距离公式,三边长(的平方)就可以罗列出来.
,
然后根据分类:AB=AC,BA=BC,CA=CB列方程进行计算.
【例1】(2022•百色)已知抛物线经过A(﹣1,0)、B(0,3)、C(3,0)三点,O为坐标原点,抛物线交正方形OBDC的边BD于点E,点M为射线BD上一动点,连接OM,交BC于点F.
(1)求抛物线的表达式;
(2)求证:∠BOF=∠BDF;
(3)是否存在点M,使△MDF为等腰三角形?若不存在,请说明理由;若存在,求ME的长.
【例2】(2022•河池)在平面直角坐标系中,抛物线L1:y=ax2+2x+b与x轴交于两点A,B(3,0),与y轴交于点C(0,3).
(1)求抛物线L1的函数解析式,并直接写出顶点D的坐标;
(2)如图,连接BD,若点E在线段BD上运动(不与B,D重合),过点E作EF⊥x轴于点F,设EF=m,问:当m为何值时,△BFE与△DEC的面积之和最小;
(3)若将抛物线L1绕点B旋转180°得抛物线L2,其中C,D两点的对称点分别记作M,N.问:在抛物线L2的对称轴上是否存在点P,使得以B,M,P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
【例3】(2022•山西)综合与探究
如图,二次函数y=﹣x2+x+4的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.点P是第一象限内二次函数图象上的一个动点,设点P的横坐标为m.过点P作直线PD⊥x轴于点D,作直线BC交PD于点E.
(1)求A,B,C三点的坐标,并直接写出直线BC的函数表达式;
(2)当△CEP是以PE为底边的等腰三角形时,求点P的坐标;
(3)连接AC,过点P作直线l∥AC,交y轴于点F,连接DF.试探究:在点P运动的过程中,是否存在点P,使得CE=FD,若存在,请直接写出m的值;若不存在,请说明理由.
【例4】(2022•贺州)如图,抛物线y=﹣x2+bx+c过点A(﹣1,0),B(3,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)点P为抛物线对称轴上一动点,当△PCB是以BC为底边的等腰三角形时,求点P的坐标;
(3)在(2)条件下,是否存在点M为抛物线第一象限上的点,使得S△BCM=S△BCP?若存在,求出点M的横坐标;若不存在,请说明理由.
1.(2022春•丰城市校级期末)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).
(1)求这个二次函数的表达式;
(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.
①求线段PM的最大值;
②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.
2.(2022•岚山区一模)已知抛物线y=ax2+bx+8与x轴交于A(﹣3,0),B(8,0)两点,交y轴于点C,点P是抛物线上一个动点,且点P的横坐标为m.
(1)求抛物线的解析式;
(2)如图1,若点P在BC上方的抛物线上运动(不与B、C重合),过点P作x轴的垂线,垂足为E,交BC于点D,过点P作BC的垂线,垂足为Q,若△PQD≌△BED,求m的值;
(3)如图2,将直线BC沿y轴向下平移5个单位,交x轴于点M,交y轴于点N.过点P作x轴的垂线,交直线MN于点D,是否存在一点P,使△BMD是等腰三角形?若存在,请直接写出符合条件的m的值;若不存在,请说明理由.
3.(2022•淮阴区校级一模)如图,抛物线y=2x2+bx+c过A(﹣1,0)、B(3,0)两点,交y轴于点C,连接BC.
(1)求该抛物线的表达式和对称轴;
(2)点D是抛物线对称轴上一动点,当△BCD是以BC为直角边的直角三角形时,求所有符合条件的点D的坐标;
(3)将抛物线在BC下方的图象沿BC折叠后与y轴交于点E,求点E的坐标;
(4)若点N是抛物线上位于对称轴右侧的一点,点M在抛物线的对称轴上,当△BMN为等边三角形时,直接写出直线AN的关系式.
4.(2022•仁寿县模拟)如图,直线y=kx+n(k≠0)与x轴、y轴分别交于A、B两点,过A,B两点的抛物线y=ax2+bx+4与x轴交于点C,且C(﹣1,0),A(4,0).
(1)求抛物线和直线AB的解析式;
(2)若M点为x轴上一动点,当△MAB是以AB为腰的等腰三角形时,求点M的坐标.
(3)若点P是抛物线上A,B两点之间的一个动点(不与A,B重合),则是否存在一点P,使△PAB的面积最大?若存在求出△PAB的最大面积;若不存在,试说明理由.
5.(2022•徐汇区模拟)如图1,在平面直角坐标系xOy中,直线y=kx+3分别交x轴、y轴于A,B两点,经过A,B两点的抛物线y=﹣x2+bx+c与x轴的正半轴相交于点C(1,0),点P为线段AB上的点,且点P的横坐标为m.
(1)求抛物线的解析式和直线AB的解析式;
(2)过P作y轴的平行线交抛物线于M,当△PBM是MP为腰的等腰三角形时,求点P的坐标;
(3)若顶点D在以PM、PB为邻边的平行四边形的形内(不含边界),求m的取值范围.
6.(2022•沭阳县模拟)如图1,在平面直角坐标系xOy中,抛物线y=x2+2x﹣3与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.
(1)求点A的坐标;
(2)如图2,连接AC,点D为线段AC下方抛物线上一动点,过点D作DE∥y轴交线段AC于E点,连接EO、AD,记△ADC的面积为S1,△AEO的面积为S2,求S1﹣S2的最大值及此时点D的坐标;
(3)如图3,连接CB,并将抛物线沿射线CB方向平移2个单位长度得到新抛物线,动点N在原抛物线的对称轴上,点M为新抛物线与y轴的交点,当△AMN为以AM为腰的等腰三角形时,请直接写出点N的坐标.
7.(2022春•北碚区校级期末)如图,已知点(0,)在抛物线C1:y=x2+bx+c上,且该抛物线与x轴正半轴有且只有一个交点A,与y轴交于点B,点O为坐标原点.
(1)求抛物线C1的解析式;
(2)抛物线C1沿射线BA的方向平移个单位得到抛物线C2,如图2,抛物线C2与x轴交于C,D两点,与y轴交于点E,点M在抛物线C2上,且在线段ED的下方,作MN∥y轴交线段DE于点N,连接ON,记△EMD的面积为S1,△EON的面积为S2,求S1+2S2的最大值;
(3)如图3,在(2)的条件下,抛物线C2的对称轴与x轴交于点F,连接EF,点P在抛物线C2上且在对称轴的右侧,满足∠PEC=∠EFO.
①直接写出P点坐标;
②是否在抛物线C2的对称轴上存在点H,使得△PDH为等腰三角形,若存在,请直接写出H点的坐标;若不存在请说明理由.
8.(2022•兴宁区校级模拟)如图,抛物线y=﹣x2+bx+c过点A、B,抛物线的对称轴交x轴于点D,直线y=﹣x+3与x轴交于点B,与y轴交于点C,且.
(1)求抛物线的解析式;
(2)点M(t,0)是x轴上的一个动点,点N是抛物线对称轴上的一个动点,当DN=2t,△MNB的面积为时,求出点M与点N的坐标;
(3)在x轴上是否存在点P,使得△PDC为等腰三角形?若存在,请求出点P的坐标,若不存在,请说明理由.
9.(2022•沈阳模拟)如图1,抛物线y=﹣x2+bx+3与y轴交于B点,与x轴交于A,C两点,直线BC的解析式为y=﹣x+m.
(1)求m与b的值;
(2)P是直线BC上方抛物线上一动点(不与点B,C重合),连接AP交BC于点E,交OB于点F.
①是否存在最大值?若存在,求出的最大值.并直接写出此时点E的坐标;若不存在,说明理由.
②当△BEF为等腰三角形时,直接写出点P的坐标.
10.(2022•永昌县一模)如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点,C是抛物线与y轴的交点,P是该抛物线上一动点.
(1)求该抛物线的解析式;
(2)在(1)中抛物线的对称轴上求一点M,使得△MAC是以AM为底的等腰三角形;求出点M的坐标.
(3)设(1)中的抛物线顶点为D,对称轴与直线BC交于点E,过抛物线上的动点P作x轴的垂线交线段BC于点Q,使得D、E、P、Q四点组成的四边形是平行四边形?若存在,直接写出P点的坐标;若不存在,请说明理由.
11.(2021•无为市三模)在平面直角坐标系中,抛物线y=ax2﹣4ax+3a(a>0)与x轴交于A、B两点(点A在点B的左侧),其顶点为C.
(1)求抛物线的对称轴;
(2)当△ABC为等边三角形时,求a的值;
(3)直线l:y=kx+b经过点A,并与抛物线交于另一点D(4,3),点P为直线l下方抛物线上一点,过点P分别作PM∥y轴交直线l于点M,PN∥x轴交直线l于点N,记W=PM+PN,求W的最大值.
12.(2021•广东模拟)如图,抛物线y=x2+bx﹣1与x轴交于点A,B(点A在点B的左侧),交y轴于点C,顶点为D,对称轴为直线x=﹣,连接AC,BC.
(1)求抛物线的解析式;
(2)求△ABC的面积;
(3)在抛物线的对称轴上是否存在点E,使得△CDE为等腰三角形?如果存在,请直接写出点E的坐标,如果不存在,请说明理由.
13.(2021•建华区二模)综合与探究
如图,在平面直角坐标系中,直线y=﹣3x﹣3与x轴交于点A,与y轴交于点C.抛物线y=x2+bx+c经过A、C两点,且与x轴交于另一点B(点B在点A右侧).
(1)求抛物线的解析式及点B坐标;
(2)设该抛物线的顶点为点H,则S△BCH= ;
(3)若点M是线段BC上一动点,过点M的直线ED平行y轴交x轴于点D,交抛物线于点E,求ME长的最大值及点M的坐标;
(4)在(3)的条件下:当ME取得最大值时,在x轴上是否存在这样的点P,使得以点M、点B、点P为顶点的三角形是等腰三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.
14.(2021•重庆模拟)如图,在平面直角坐标系中,抛物线y=ax2﹣x+c(a≠0)与x轴交于A(﹣1,0)、B(3,0)两点,直线AC与y轴交于点C,与抛物线交于点D,OA=OC.
(1)求该抛物线与直线AC的解析式;
(2)若点E是x轴下方抛物线上一动点,连接AE、CE.求△ACE面积的最大值及此时点E的坐标;
(3)将原抛物线沿射线AD方向平移2个单位长度,得到新抛物线:y1=a1x2+b1x+c1(a≠0),新抛物线与原抛物线交于点F,在直线AD上是否存在点P,使以点P、D、F为顶点的三角形是等腰三角形?若存在,直接写出点P的坐标;若不存在,请说明理由.x1
15.(2021•玄武区二模)已知二次函数y=x2﹣(2m+2)x+m2+2m(m是常数).
(1)求证:不论m为何值,该二次函数图象与x轴总有两个公共点;
(2)二次函数的图象与y轴交于点A,顶点为B,将二次函数的图象沿y轴翻折,所得图象的顶点为B1,若△ABB1是等边三角形,求m的值.
16.(2021•朝阳)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴分别交于点A(﹣1,0)和点B,与y轴交于点C(0,3).
(1)求抛物线的解析式及对称轴;
(2)如图1,点D与点C关于对称轴对称,点P在对称轴上,若∠BPD=90°,求点P的坐标;
(3)点M是抛物线上位于对称轴右侧的点,点N在抛物线的对称轴上,当△BMN为等边三角形时,请直接写出点M的横坐标.
17.(2021•绥化)如图,已知抛物线y=ax2+bx+5(a≠0)与x轴交于点A(﹣5,0),点B(1,0)(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点,连接BD.直线y=经过点A,且与y轴交于点E.
(1)求抛物线的解析式;
(2)点N是抛物线上的一点,当△BDN是以DN为腰的等腰三角形时,求点N的坐标;
(3)点F为线段AE上的一点,点G为线段OA上的一点,连接FG,并延长FG与线段BD交于点H(点H在第一象限),当∠EFG=3∠BAE且HG=2FG时,求出点F的坐标.
18.(2021•宿迁)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(4,0),与y轴交于点C.连接AC,BC,点P在抛物线上运动.
(1)求抛物线的表达式;
(2)如图①,若点P在第四象限,点Q在PA的延长线上,当∠CAQ=∠CBA+45°时,求点P的坐标;
(3)如图②,若点P在第一象限,直线AP交BC于点F,过点P作x轴的垂线交BC于点H,当△PFH为等腰三角形时,求线段PH的长.
19.(2021•怀化)如图所示,抛物线与x轴交于A、B两点,与y轴交于点C,且OA=2,OB=4,OC=8,抛物线的对称轴与直线BC交于点M,与x轴交于点N.
(1)求抛物线的解析式;
(2)若点P是对称轴上的一个动点,是否存在以P、C、M为顶点的三角形与△MNB相似?若存在,求出点P的坐标,若不存在,请说明理由;
(3)D为CO的中点,一个动点G从D点出发,先到达x轴上的点E,再走到抛物线对称轴上的点F,最后返回到点C.要使动点G走过的路程最短,请找出点E、F的位置,写出坐标,并求出最短路程.
(4)点Q是抛物线上位于x轴上方的一点,点R在x轴上,是否存在以点Q为直角顶点的等腰Rt△CQR?若存在,求出点Q的坐标,若不存在,请说明理由.
20.(2021•南充)如图,已知抛物线y=ax2+bx+4(a≠0)与x轴交于点A(1,0)和B,与y轴交于点C,对称轴为直线x=.
(1)求抛物线的解析式;
(2)如图1,若点P是线段BC上的一个动点(不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,连接OQ,当线段PQ长度最大时,判断四边形OCPQ的形状并说明理由;
(3)如图2,在(2)的条件下,D是OC的中点,过点Q的直线与抛物线交于点E,且∠DQE=2∠ODQ.在y轴上是否存在点F,使得△BEF为等腰三角形?若存在,求点F的坐标;若不存在,请说明理由.
相关试卷
这是一份中考数学压轴题之学霸秘笈大揭秘(全国通用)专题4二次函数与相似问题(全国通用)(原卷版+解析),共73页。
这是一份中考数学压轴题之学霸秘笈大揭秘(全国通用)专题1二次函数与等腰三角形问题(原卷版+解析),共79页。
这是一份专题01 二次函数与等腰三角形问题-挑战中考数学压轴题之学霸秘笈大揭秘(全国通用),文件包含专题1二次函数与等腰三角形问题-挑战中考数学压轴题之学霸秘笈大揭秘解析版docx、专题1二次函数与等腰三角形问题-挑战中考数学压轴题之学霸秘笈大揭秘原卷版docx等2份试卷配套教学资源,其中试卷共86页, 欢迎下载使用。