所属成套资源:2024年中考数学二轮题型突破练习(2份打包,原卷版+教师版)
2024年中考数学二轮题型突破练习题型12 二次函数与圆的问题(专题训练)(2份打包,原卷版+教师版)
展开
这是一份2024年中考数学二轮题型突破练习题型12 二次函数与圆的问题(专题训练)(2份打包,原卷版+教师版),文件包含2024年中考数学二轮题型突破练习类型12二次函数与圆的问题专题训练原卷版doc、2024年中考数学二轮题型突破练习类型12二次函数与圆的问题专题训练教师版doc等2份试卷配套教学资源,其中试卷共87页, 欢迎下载使用。
(1)求的长和关于的函数表达式.
(2)当,且长度分别等于,,的三条线段组成的三角形与相似时,求的值.
(3)延长交半圆于点,当时,求的长.
【答案】(1),
(2)或或
(3)
【分析】(1)如图1,连接,根据切线的性质得出,证明,得出,即可得出;证明四边形是平行四边形,得出,代入数据可得;
(2)根据三边之比为,可分为三种情况.当时,当时,当时,分别列出比例式,进而即可求解.
(3)连接,,过点作于点,根据,得出,由,可得,代入(1)中解析式,即可求解.
【详解】(1)解:如图1,连接.
∵切半圆于点,
∴.
∵,,
∴,
∴.
∵,
∴,
∴,
即,
∴.
如图2,,
∴.
∵,
∴四边形是平行四边形,
∴.
∵,
∴,
∴.
(2)∵,,三边之比为(如图2),
∴可分为三种情况.
i)当时,
,,
解得,
∴.
ii)当时,
,,
解得,
∴.
iii)当时,
,,
解得,
∴.
(3)如图3,连接,,过点作于点,
则,,
∴.
∵,,
∴.
∵,
∴,
∴,
∴,
∴,,
∴,即的长为.
【点睛】本题考查了切线的性质,解直角三角形,相似三角形的性质与判定,函数解析式,分类讨论,作出辅助线是解题的关键.
2.(2023·山东烟台·统考中考真题)如图,抛物线与轴交于两点,与轴交于点.抛物线的对称轴与经过点的直线交于点,与轴交于点.
(1)求直线及抛物线的表达式;
(2)在抛物线上是否存在点,使得是以为直角边的直角三角形?若存在,求出所有点的坐标;若不存在,请说明理由;
(3)以点为圆心,画半径为2的圆,点为上一个动点,请求出的最小值.
【答案】(1)直线的解析式为;抛物线解析式为;(2)存在,点M的坐标为或 或;(3)
【分析】(1)根据对称轴,,得到点A及B的坐标,再利用待定系数法求解析式即可;
(2)先求出点D的坐标,再分两种情况:①当时,求出直线的解析式为,解方程组,即可得到点M的坐标;②当时,求出直线的解析式为,解方程组,即可得到点M的坐标;
(3)在上取点,使,连接,证得,又,得到,推出,进而得到当点C、P、F三点共线时,的值最小,即为线段的长,利用勾股定理求出即可.
【详解】(1)解:∵抛物线的对称轴,,
∴,
将代入直线,得,
解得,
∴直线的解析式为;
将代入,得
,解得,
∴抛物线的解析式为;
(2)存在点,
∵直线的解析式为,抛物线对称轴与轴交于点.
∴当时,,
∴,
①当时,
设直线的解析式为,将点A坐标代入,
得,
解得,
∴直线的解析式为,
解方程组,
得或,
∴点M的坐标为;
②当时,
设直线的解析式为,将代入,
得,
解得,
∴直线的解析式为,
解方程组,
解得或,
∴点M的坐标为 或
综上,点M的坐标为或 或;
(3)如图,在上取点,使,连接,
∵,
∴,
∵,、
∴,
又∵,
∴,
∴,即,
∴,
∴当点C、P、F三点共线时,的值最小,即为线段的长,
∵,
∴,
∴的最小值为.
【点睛】此题是一次函数,二次函数及圆的综合题,掌握待定系数法求函数解析式,直角三角形的性质,勾股定理,相似三角形的判定和性质,求两图象的交点坐标,正确掌握各知识点是解题的关键.
3.(2023·江苏苏州·统考中考真题)如图,二次函数的图像与轴分别交于点(点A在点的左侧),直线是对称轴.点在函数图像上,其横坐标大于4,连接,过点作,垂足为,以点为圆心,作半径为的圆,与相切,切点为.
(1)求点的坐标;
(2)若以的切线长为边长的正方形的面积与的面积相等,且不经过点,求长的取值范围.
【答案】(1);(2)或或
【分析】(1)令求得点的横坐标即可解答;
(2)由题意可得抛物线的对称轴为,设,则;如图连接,则,进而可得切线长为边长的正方形的面积为;过点P作轴,垂足为H,可得;由题意可得,解得;然后再分当点M在点N的上方和下方两种情况解答即可.
【详解】(1)解:令,则有:,解得:或,
∴.
(2)解:∵抛物线过
∴抛物线的对称轴为,
设,
∵,
∴,
如图:连接,则,
∴,
∴切线为边长的正方形的面积为,
过点P作轴,垂足为H,则:,
∴
∵,
∴,
假设过点,则有以下两种情况:
①如图1:当点M在点N的上方,即
∴,解得:或,
∵
∴;
②如图2:当点M在点N的上方,即
∴,解得:,
∵
∴;
综上,或.
∴当不经过点时,或或.
【点睛】本题主要考查了二次函数的性质、切线的性质、勾股定理等知识点,掌握分类讨论思想是解答本题的关键.
4.(2023·四川自贡·统考中考真题)如图,抛物线与x轴交于,两点,与轴交于点.
(1)求抛物线解析式及,两点坐标;
(2)以,,,为顶点的四边形是平行四边形,求点坐标;
(3)该抛物线对称轴上是否存在点,使得,若存在,求出点的坐标;若不存在,请说明理由.
【答案】(1)抛物线解析式为,,;(2)或或;(3)
【分析】(1)将点代入抛物线解析式,待定系数法求解析式,进而分别令,即可求得两点的坐标;
(2)分三种情况讨论,当,为对角线时,根据中点坐标即可求解;
(3)根据题意,作出图形,作交于点,为的中点,连接,则在上,根据等弧所对的圆周角相等,得出在上,进而勾股定理,根据建立方程,求得点的坐标,进而得出的解析式,即可求解.
【详解】(1)解:∵抛物线与x轴交于,
∴
解得:,
∴抛物线解析式为,
当时,,
∴,
当时,
解得:,
∴
(2)∵,,,
设,
∵以,,,为顶点的四边形是平行四边形
当为对角线时,
解得:,
∴;
当为对角线时,
解得:
∴
当为对角线时,
解得:
∴
综上所述,以,,,为顶点的四边形是平行四边形,或或
(3)解:如图所示,作交于点,为的中点,连接,
∵
∴是等腰直角三角形,
∴在上,
∵,,
∴,,
∵,
∴在上,
设,则
解得:(舍去)
∴点
设直线的解析式为
∴
解得:.
∴直线的解析式
∵,,
∴抛物线对称轴为直线,
当时,,
∴.
【点睛】本题考查了二次函数的综合运用,待定系数法求解析式,平行四边形的性质,圆周角角定理,勾股定理,求一次函数解析式,熟练掌握以上知识是解题的关键.
5.(2023·四川乐山·统考中考真题)已知是抛物(b为常数)上的两点,当时,总有
(1)求b的值;
(2)将抛物线平移后得到抛物线.
探究下列问题:
①若抛物线与抛物线有一个交点,求m的取值范围;
②设抛物线与x轴交于A,B两点,与y轴交于点C,抛物线的顶点为点E,外接圆的圆心为点F,如果对抛物线上的任意一点P,在抛物线上总存在一点Q,使得点P、Q的纵坐标相等.求长的取值范围.
【答案】(1)0;(2)①②
【分析】(1)根据,且时,总有,变形后即可得到结论;
(2)按照临界情形,画出图象分情况讨论求解即可.
【详解】(1)解:由题可知:
时,总有,
.
则,
∴,
∴总成立,且,
;
(2)①注意到抛物线最大值和开口大小不变,m只影响图象左右平移下面考虑满足题意的两种临界情形:
(i)当抛物线过点时,如图所示,
此时,,解得或(舍).
(ii)当抛物线过点时,如图所示,
此时,,
解得或(舍),
综上,,
②同①考虑满足题意的两种临界情形:
(i)当抛物线过点时,如图所示,
此时,,解得或(舍).
(ii)当抛物线过点时,如图所示,
此时,,解得或0(舍).
综上,
如图,由圆的性质可知,点E、F在线段的垂直平分线上.
令,解得,
,
,
,
设,
,
,
,
,
,即,
.
,即,
,
【点睛】此题考查了二次函数的图象和性质、垂径定理、解一元二次方程等知识,数形结合和分类讨论是解题的关键.
6.(2023·四川宜宾·统考中考真题)如图,抛物线与x轴交于点、,且经过点.
(1)求抛物线的表达式;
(2)在x轴上方的抛物线上任取一点N,射线、分别与抛物线的对称轴交于点P、Q,点Q关于x轴的对称点为,求的面积;
(3)点M是y轴上一动点,当最大时,求M的坐标.
【答案】(1);(2);(3)
【分析】(1)设抛物线的解析式为,代入点C的坐标,确定a值即可.
(2)设,直线的解析式为,直线的解析式为,表示出P,Q,的坐标,进而计算即可.
(3)当M是y轴与经过A,C,M三点的圆的切点是最大计算即可.
【详解】(1)∵抛物线与x轴交于点、,
∴设抛物线的解析式为,
∵经过点,
∴,
解得,
∴,
∴.
(2)如图,当点N在对称轴的右侧时,
∵,
∴对称轴为直线,
设,直线的解析式为,直线的解析式为,
∴
解得,
∴直线的解析式为,直线的解析式为,
当时,,
,
∴,,,
∴,
∴.
如图,当点N在对称轴的左侧时,
∵,
∴对称轴为直线,
设,,,,
∴,
∴.
综上所述,.
(3)当的外接圆与相切,切点为M时, 最大,
设外接圆的圆心为E,Q是异于点M的一点,连接,,交圆于点T,
则,根据三角形外角性质,得,故,
∴最大,
设与圆交于点H,连接,,根据切线性质,
∴,
作直径,连接,
∴,,
∵,
∴,
∴,
∴,
∴,
∴,
∴,
设,则,
∴,
∴,
过点E作,垂足为F,过点C作,垂足为G,交于点P,
根据垂径定理,得,四边形是矩形,
∴,
根据,得,
∴,
∴,
在直角三角形中,
∴,
∴,
∴,
∴,
解得,(舍去),
∴,
故,
∴当最大时,.
【点睛】此题是二次函数综合题,主要考查了待定系数法,等腰三角形的性质,垂径定理,勾股定理,矩形的判定和性质,三角形的外接圆,相似三角形的判定和性质,用方程的思想解决问题是解本题的关键.
7.(2023·湖北恩施·统考中考真题)在平面直角坐标系中,为坐标原点,已知抛物线与轴交于点,抛物线的对称轴与轴交于点.
(1)如图,若,抛物线的对称轴为.求抛物线的解析式,并直接写出时的取值范围;
(2)在(1)的条件下,若为轴上的点,为轴上方抛物线上的点,当为等边三角形时,求点,的坐标;
(3)若抛物线经过点,,,且,求正整数m,n的值.
【答案】(1);
(2);或,;
(3),或,
【分析】(1)根据,抛物线的对称轴为,待定系数法求解析式即可求解;当时,求得的范围,进而结合函数图象即可求解;
(2)①连接,,交对称轴于点D,由四点共圆,得,证明,求出点D的坐标,确定直线的解析式,进而求得点的坐标,设,,勾股定理即可求解;②由①可得,则当与重合时也存在等边三角形,根据等边三角形的性质即可求解.
(3)根据抛物线经过点,,,可得抛物线对称为直线,则,则,进而令,求得的范围,进而根据函数图象可知或,进而分别讨论求得的值,即可求解.
【详解】(1)解:∵,抛物线的对称轴为.
∴
解得:
∴抛物线解析式为,
当时,即
解得:,
∴当时,
(2)解:①如图所示,连接,,交对称轴于点D,
∵,
∴,
则
∴,,
∵为等边三角形,
∴,
∴,
∴四点共圆,
∴,
∵,
∴.
∴,
∴,
∵,,
∴,
∴,则,
设直线的解析式为
则
解得:
所以直线的解析式为
联立
解得:或
∴,
∵,设,
∵
∴
解得:
∴;
②由①可得,当与点重合时,为等边三角形
则与对称,此时,,
综上所述;;或,;
(3)解:∵抛物线经过点,,,
∴抛物线对称为直线,
则,则
∴抛物线解析式为
∴顶点坐标为
当时,
解得:或
∵,且为正整数,过点,则当时,
∴或,
当时,将点代入解析式,
解得:
∵
则,
当时,将点代入解析式
解得:
∵
则,
综上所述,,或,.
【点睛】本题考查了二次函数的性质,根据特三角函数求角度,圆内接四边形对角互补,二次函数的性质,熟练掌握二次函数的性质是解题的关键.
8.如图1,在平面直角坐标系中,抛物线与x轴分别相交于A、B两点,与y轴相交于点C,下表给出了这条抛物线上部分点的坐标值:
(1)求出这条抛物线的解析式及顶点M的坐标;
(2)是抛物线对称轴上长为1的一条动线段(点P在点Q上方),求的最小值;
(3)如图2,点D是第四象限内抛物线上一动点,过点D作轴,垂足为F,的外接圆与相交于点E.试问:线段的长是否为定值?如果是,请求出这个定值;如果不是,请说明理由.
【答案】(1);;(2);(3)是,1.
【分析】
(1)依据表格数据,设出抛物线的顶点式,利用待定系数法求解即可;
(2)利用平移和找对称点的方式,将的长转化为,再利用两点之间线段最短确定的最小值等于CE的长,加1后即能确定的最小值;
(3)设出圆心和D点的坐标,接着表示出E点的坐标,利用圆心到B点的距离等于圆心到D点的距离,求出q和e的关系,得到E点的纵坐标,进而确定EF的长为定值.
【详解】
解:(1)由表格数据可知,顶点坐标为(1,4)
设抛物线解析式为:,
将点(0,3)代入解析式得:3=a+4,
∴,
∴抛物线解析式为:,顶点坐标.
(2)由表格可知,抛物线经过点A(-1,0),C(0,3),
如图3,将A点向上平移一个单位,得到,
则
∴四边形是平行四边形,
∴,
作关于MQ的对称点E,则
∴,
∴,
当P、E、C三点共线时,最短,
设直线CE的解析式为:,
将C、E两点坐标代入解析式可得:,
∴,
∴直线CE的解析式为:,
令,则,
∴当时,P、E、C三点共线,此时最短,
∴的最小值为.
(3)是;
理由:设,
因为A、B两点关于直线x=1对称,
所以圆心位于该直线上,
所以可设的外接圆的圆心为,
作,垂足为点N,则,
由轴,
∴,
∵,且由表格数据可知
∴,
化简得:,
∵点D是第四象限内抛物线上一动点,且抛物线解析式为,
∴,
∴,
∴,
∵,
∴,
∴,
∴,
即的长不变,为1.
【点睛】
本题涉及到了动点问题,综合考查了用待定系数法求抛物线解析式、点的平移、勾股定理、平行四边形的判定与性质、最短路径问题、圆的性质等内容,解决本题的关键是理解并掌握相关概念与公式,能将题干信息与图形相结合,挖掘图中隐含信息,本题有一定的计算量,对学生的综合分析与计算能力都有较高的要求,本题蕴含了数形结合的思想方法等.
9.如图,抛物线(其中)与x轴交于A、B两点,交y轴于点C.
(1)直接写出的度数和线段AB的长(用a表示);
(2)若点D为的外心,且与的周长之比为,求此抛物线的解析式;
(3)在(2)的前提下,试探究抛物线上是否存在一点P,使得?若存在,求出点P的坐标;若不存在,请说明理由.
【答案】(1)∠OCA=45°,AB= a+1;(2);(3)存在,P1(,),P2(1,-2).
【分析】
(1)根据二次函数解析式可得A(a,0),C(0,-a),B(-1,0),即可得出OA=OB=a,OB=1,即可证明△OCA是等腰直角三角形,可得∠OCA=45°,根据线段的和差关系可表示AB的长;
(2)如图,作△ABC的外接圆⊙D,根据等腰直角三角形的性质可得AC=,利用两点间距离公式可用a表示出BC的长,根据圆周角定理可得∠D=2∠OAC=90°,可得△DBC是等腰直角三角形,即可证明△DBC∽△OCA,根据相似三角形周长之比等于相似比列方程求出a值即可得答案;
(3)如图,过点D作DH⊥AB于H,过点C作AC的垂线,交x轴于F,过点O作OG⊥AC于G,连接AP交CF于E,可得△OCF是等腰直角三角形,利用待定系数法可得直线CF的解析式,根据外心的定义及等腰直角三角形的性质可求出点D坐标,即可得出BH、DH的长,根据,∠BHD=∠ACE=90°可证明△BHD∽△ACE,根据相似三角形的性质可求出CE的长,根据两点间距离公式可得点E坐标,利用待定系数法可得直线AE解析式,联立直线AE与抛物线的解析式求出点P坐标即可得答案.
【详解】
(1)∵抛物线(其中)与x轴交于A、B两点,交y轴于点C.
∴当x=0时,y=-a,
当y=0时,,
解得:,,
∴A(a,0),C(0,-a),B(-1,0),
∴OB=1,OA=OC=a,
∴△OCA是等腰直角三角形,
∴∠OCA=45°,AB=OA+OB=a+1.
(2)如图,作△ABC的外接圆⊙D,
∵点D为的外心,
∴DB=DC,
∵△OCA是等腰直角三角形,OA=a,
∴∠OAC=45°,AC=,
∵∠BDC和∠BAC是所对的圆心角和圆周角,
∴∠BDC=2∠BAC=90°,
∴∠DBC=45°,
∴∠DBC=∠OAC,
∴△DBC∽△OCA,
∵与的周长之比为,
∴,即,
解得:,
经检验:是原方程的根,
∵,
∴a=2,
∴抛物线解析式为:=.
(3)如图,过点D作DH⊥AB于H,过点C作AC的垂线,交x轴于F,过点O作OG⊥AC于G,连接AP交CF于E,
∵a=2,
∴C(0,-2),A(2,0),AC=,
∵∠OCA=45°,
∴∠OCF=45°,
∴△OCF是等腰直角三角形,
∴F(-2,0),
设直线CF的解析式为y=kx+b,
∴,
解得:,
∴直线CF的解析式为,
∵△OCA是等腰直角三角形,OG⊥AC,
∴OG所在直线为AC的垂直平分线,点G为AC中点,
∵点D为的外心,
∴点D在直线OG上,
∵A(2,0),C(0,-2),
∴G(1,-1),
设直线OG的解析式y=mx,
∴m=-1,
∴直线OG的解析式y=-x,
∵点D为△ABC的外心,
∴点D在AB的垂直平分线上,
∴点D的横坐标为=,
把x=代入y=-x得y=-,
∴D(,-),
∴DH=,BH=1+=,
∵,∠BHD=∠ACE=90°,
∴△BHD∽△ACE,
∴,即,
解得:,
∵点E在直线CF上,
∴设点E坐标为(n,-n-2),
∴CE==,
解得:,
∴(,),(,),
设直线AE1的解析式为y=k1x+b1,
∴,
解得:,
∴直线AE1的解析式为,
同理:直线AE2的解析式为,
联立直线AE1解析式与抛物线解析式得,
解得:,(与点A重合,舍去),
∴P1(,),
联立直线AE2解析式与抛物线解析式得,
解得:,(与点A重合,舍去),
∴P2(1,-2).
综上所述:存在点P,使得,点P坐标为P1(,),P2(1,-2).
【点睛】
本题考查二次函数的综合,考查了二次函数的性质、待定系数法求一次函数解析式、圆周角定理、等腰三角形的性质、相似三角形的判定与性质,熟练掌握相关性质及定理是解题关键
10.如图,已知二次函数的图象经过点且与轴交于原点及点.
(1)求二次函数的表达式;
(2)求顶点的坐标及直线的表达式;
(3)判断的形状,试说明理由;
(4)若点为上的动点,且的半径为,一动点从点出发,以每秒2个单位长度的速度沿线段匀速运动到点,再以每秒1个单位长度的速度沿线段匀速运动到点后停止运动,求点的运动时间的最小值.
【答案】(1);(2),;(3)等腰直角三角形,理由见解析;(4)
【分析】
(1)根据已知条件,运用待定系数法直接列方程组求解即可;
(2)根据(1)中二次函数解析式,直接利用顶点坐标公式计算即可,再根据点A、B坐标求出AB解析式即可;
(3)根据二次函数对称性可知为等腰三角形,再根据O、A、B三点坐标,求出三条线段的长,利用勾股定理验证即可;
(4)根据题意可知动点的运动时间为,在上取点,使,可证明,根据相似三角形比例关系得,即,当、、三点共线时,取得最小值,再根据等腰直角三角形的性质以及勾股定理进一步计算即可.
【详解】
解:(1)二次函数的图象经过,且与轴交于原点及点
∴,二次函数表达式可设为:
将,代入得:
解这个方程组得
∵二次函数的函数表达式为
(2)∵点为二次函数图像的顶点,
∴,
∴顶点坐标为:,
设直线的函数表达式为,则有:
解之得:
∴直线的函数表达式为
(3)是等腰直角三角形,
过点作于点,易知其坐标为
∵的三个顶点分别是,,,
∴,
且满足
∴是等腰直角三角形
(4)如图,以为圆心,为半径作圆,则点在圆周上,依题意知:
动点的运动时间为
在上取点,使,
连接,则在和中,
满足:,,
∴,
∴,
从而得:
∴
显然当、、三点共线时,取得最小值,
过点作于点,由于,
且为等腰直角三角形,
则有,,
∴动点的运动时间的最小值为:
.
【点睛】
本题主要考查待定系数法求函数解析式,抛物线顶点坐标,等腰直角三角形的性质与判定,相似三角形的判定与性质等知识点,将运动时间的最小值转换为线段长度的最小值是解题的关键.
11.我们把方程(x﹣m)2+(y﹣n)2=r2称为圆心为(m,n)、半径长为r的圆的标准方程.例如,圆心为(1,﹣2)、半径长为3的圆的标准方程是(x﹣1)2+(y+2)2=9.在平面直角坐标系中,⊙C与轴交于点A,B,且点B的坐标为(8,0),与y轴相切于点D(0,4),过点A,B,D的抛物线的顶点为E.
(1)求⊙C的标准方程;
(2)试判断直线AE与⊙C的位置关系,并说明理由.
【分析】(1)如图,连接CD,CB,过点C作CM⊥AB于M.设⊙C的半径为r.在Rt△BCM中,利用勾股定理求出半径以及等C的坐标即可解决问题.
(2)结论:AE是⊙C的切线.连接AC,CE.求出抛物线的解析式,推出点E的坐标,求出AC,AE,CE,利用勾股定理的逆定理证明∠CAE=90°即可解决问题.
【解析】(1)如图,连接CD,CB,过点C作CM⊥AB于M.设⊙C的半径为r.
∵与y轴相切于点D(0,4),
∴CD⊥OD,
∵∠CDO=∠CMO=∠DOM=90°,
∴四边形ODCM是矩形,
∴CM=OD=4,CD=OM=r,
∵B(8,0),
∴OB=8,
∴BM=8﹣r,
在Rt△CMB中,∵BC2=CM2+BM2,
∴r2=42+(8﹣r)2,
解得r=5,
∴C(5,4),
∴⊙C的标准方程为(x﹣5)2+(y﹣4)2=25.
(2)结论:AE是⊙C的切线.
理由:连接AC,CE.
∵CM⊥AB,
∴AM=BM=3,
∴A(2,0),B(8,0)
设抛物线的解析式为y=a(x﹣2)(x﹣8),
把D(0,4)代入y=a(x﹣2)(x﹣8),可得a,
∴抛物线的解析式为y(x﹣2)(x﹣8)x2x+4(x﹣5)2,
∴抛物线的顶点E(5,),
∵AE,CE=4,AC=5,
∴EC2=AC2+AE2,
∴∠CAE=90°,
∴CA⊥AE,
∴AE是⊙C的切线.
12.如图,抛物线y=ax2x+c经过点A(﹣1,0)和点C(0,3)与x轴的另一交点为点B,点M是直线BC上一动点,过点M作MP∥y轴,交抛物线于点P.
(1)求该抛物线的解析式;
(2)在抛物线上是否存在一点Q,使得△QCO是等边三角形?若存在,求出点Q的坐标;若不存在,请说明理由;
(3)以M为圆心,MP为半径作⊙M,当⊙M与坐标轴相切时,求出⊙M的半径.
【分析】(1)把点A(﹣1,0)和点C (0,3)代入y=ax2x+c求出a与c的值即可得出抛物线的解析式;
(2)①当点Q在y轴右边时,假设△QCO为等边三角形,过点Q作QH⊥OC于H,OC=3,则OH,tan60°,求出Q(,),把x代入yx2x+3,得y,则假设不成立;
②当点Q在y轴的左边时,假设△QCO为等边三角形,过点Q作QT⊥OC于T,OC=3,则OT,tan60°,求出Q(,),把x代入yx2x+3,得y,则假设不成立;
(3)求出B(4,0),待定系数法得出BC直线的解析式yx+3,当M在线段BC上,⊙M与x轴相切时,延长PM交AB于点D,则点D为⊙M与x轴的切点,即PM=MD,设P(x,x2x+3),M(x,x+3),则PDx2x+3,MDx+3,由PD﹣MD=MD,求出x=1,即可得出结果;当M在线段BC上,⊙M与y轴相切时,延长PM交AB于点D,过点M作ME⊥y轴于E,则点E为⊙M与y轴的切点,即PM=ME,PD﹣MD=EM=x,设P(x,x2x+3),M(x,x+3),则PDx2x+3,MDx+3,代入即可得出结果;当M在BC延长线,⊙M与x轴相切时,点P与A重合,M的纵坐标的值即为所求;当M在CB延长线,⊙M与y轴相切时,延长PD交x轴于D,过点M作ME⊥y轴于E,则点E为⊙M与y轴的切点,即PM=ME,PD﹣MD=EM=x,设P(x,x2x+3),M(x,x+3),则PDx2x﹣3,MDx﹣3,代入即可得出结果.
【解析】(1)把点A(﹣1,0)和点C (0,3)代入y=ax2x+c得:,
解得:,
∴抛物线的解析式为:yx2x+3;
(2)不存在,理由如下:
①当点Q在y轴右边时,如图1所示:
假设△QCO为等边三角形,
过点Q作QH⊥OC于H,
∵点C (0,3),
∴OC=3,
则OHOC,tan60°,
∴QH=OH•tan60°,
∴Q(,),
把x代入yx2x+3,
得:y,
∴假设不成立,
∴当点Q在y轴右边时,不存在△QCO为等边三角形;
②当点Q在y轴的左边时,如图2所示:
假设△QCO为等边三角形,
过点Q作QT⊥OC于T,
∵点C (0,3),
∴OC=3,
则OTOC,tan60°,
∴QT=OT•tan60°,
∴Q(,),
把x代入yx2x+3,
得:y,
∴假设不成立,
∴当点Q在y轴左边时,不存在△QCO为等边三角形;
综上所述,在抛物线上不存在一点Q,使得△QCO是等边三角形;
(3)令x2x+3=0,
解得:x1=﹣1,x2=4,
∴B(4,0),
设BC直线的解析式为:y=kx+b,把B、C的坐标代入则,
解得:,
∴BC直线的解析式为:yx+3,
当M在线段BC上,⊙M与x轴相切时,如图3所示:
延长PM交AB于点D,
则点D为⊙M与x轴的切点,即PM=MD,
设P(x,x2x+3),M(x,x+3),
则PDx2x+3,MDx+3,
∴(x2x+3)﹣(x+3)x+3,
解得:x1=1,x2=4(不合题意舍去),
∴⊙M的半径为:MD3;
当M在线段BC上,⊙M与y轴相切时,如图4所示:
延长PM交AB于点D,过点M作ME⊥y轴于E,
则点E为⊙M与y轴的切点,即PM=ME,PD﹣MD=EM=x,
设P(x,x2x+3),M(x,x+3),
则PDx2x+3,MDx+3,
∴(x2x+3)﹣(x+3)=x,
解得:x1,x2=0(不合题意舍去),
∴⊙M的半径为:EM;
当M在BC延长线,⊙M与x轴相切时,如图5所示:
点P与A重合,
∴M的横坐标为﹣1,
∴⊙M的半径为:M的纵坐标的值,
即:(﹣1)+3;
当M在CB延长线,⊙M与y轴相切时,如图6所示:
延长PD交x轴于D,过点M作ME⊥y轴于E,
则点E为⊙M与y轴的切点,即PM=ME,PD﹣MD=EM=x,
设P(x,x2x+3),M(x,x+3),
则PDx2x﹣3,MDx﹣3,
∴(x2x﹣3)﹣(x﹣3)=x,
解得:x1,x2=0(不合题意舍去),
∴⊙M的半径为:EM;
综上所述,⊙M的半径为或或或.
13.在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(4,0)两点,交y轴于点C,点P是第四象限内抛物线上的一个动点.
(1)求二次函数的解析式;
(2)如图甲,连接AC,PA,PC,若,求点P的坐标;
(3)如图乙,过A,B,P三点作⊙M,过点P作PE⊥x轴,垂足为D,交⊙M于点E.点P在运动过程中线段DE的长是否变化,若有变化,求出DE的取值范围;若不变,求DE的长.
【答案】(1)y=x2﹣x﹣4;(2)P(3,﹣);(3)没有变化,2
【解析】
【分析】
(1)由二次函数的图象与轴交于,两点,可得二次函数的解析式为,由此即可解决问题.
(2)根据,构建方程即可解决问题.
(3)结论:点在运动过程中线段的长是定值,.根据,根据方程求出,再利用中点坐标公式,求出点的纵坐标即可解决问题.
【详解】
解:(1)二次函数的图象与轴交于,两点,
二次函数的解析式为,
即.
(2)如图甲中,连接.设.
由题意,,,
,
,
整理得,,
解得或(舍弃),
.
(3)结论:点在运动过程中线段的长是定值,.
理由:如图乙中,连接,,,设,,,.
由题意,,
,
解得,
,,
,
,
,
点在运动过程中线段的长是定值,.
【点睛】
本题属于二次函数综合题,考查了三角形的面积,三角形的外接圆,三角形的外心等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.
14.如图,在直角坐标系中,四边形OABC是平行四边形,经过A(﹣2,0),B,C三点的抛物线y=ax2+bx+(a<0)与x轴的另一个交点为D,其顶点为M,对称轴与x轴交于点E.
(1)求这条抛物线对应的函数表达式;
(2)已知R是抛物线上的点,使得△ADR的面积是平行四边形OABC的面积的,求点R的坐标;
(3)已知P是抛物线对称轴上的点,满足在直线MD上存在唯一的点Q,使得∠PQE=45°,求点P的坐标.
【答案】(1)y=﹣x2+x+;(2)(1+,4)或(1﹣,4)或(1+,﹣4)或(1﹣,﹣4);(3)P(1,120﹣168)
【解析】
【分析】
【详解】
解:(1)OA=2=BC,故函数的对称轴为x=1,则x=﹣=1①,
将点A的坐标代入抛物线表达式得:0=4a﹣2b+②,
联立①②并解得,故抛物线的表达式为:y=﹣x2+x+③;
(2)由抛物线的表达式得,点M(1,3)、点D(4,0);
∵△ADR的面积是▱OABC的面积的,
∴×AD×|yR|=×OA×OB,则×6×|yR|=×2×,解得:yR=±④,
联立④③并解得,或
故点R的坐标为(1+,4)或(1﹣,4)或(1+,﹣4)或(1﹣,﹣4);
(3)作△PEQ的外接圆R,
∵∠PQE=45°,故∠PRE=90°,
则△PRE为等腰直角三角形,
当直线MD上存在唯一的点Q,则RQ⊥MD,
点M、D的坐标分别为(1,4)、(4,0),
则ME=4,ED=4﹣1=3,则MD=5,
过点R作RH⊥ME于点H,
设点P(1,2m),则PH=HE=HR=m,则圆R的半径为m,则点R(1+m,m),
S△MED=S△MRD+S△MRE+S△DRE,即×EM•ED=×MD×RQ+×ED•yR+×ME•RH,
∴×4×3=×5×m+×4×m+×3×m,解得m=60﹣84,故点P(1,120﹣168).
15如图1,在平面直角坐标系中,,以O为圆心,OA的长为半径的半圆O交AO的延长线于C,连接AB,BC,过O作ED//BC分别交AB和半圆O于E,D,连接OB,CD.
(1)求证:BC是半圆O的切线;
(2)试判断四边形OBCD的形状,并说明理由;
(3)如图2,若抛物线经过点D,且顶点为E,求此抛物线的解析式;点P 是此抛物线对称轴上的一动点,以E,D,P为顶点的三角形与相似,问抛物线上是否存在点Q,使得,若存在,请直接写出Q点的横坐标;若不存在,说明理由.
【答案】(1)见解析;(2)平行四边形,见解析;(3)抛物线的解析式为,存在,Q点的横坐标为或或或
【解析】
【分析】
(1)证得OE是△ABC的中位线,求得点E的坐标,分别求得AB、AC、BC的长,利用勾股定理的逆定理证得是直角三角形,从而证明结论;
(2)求得BC=OD=OA=,利用平行四边形的判定定理可证得四边形OBCD是平行四边形;
(3)证明Rt△ODNRt△OEM,求得点D的坐标,利用待定系数法可求得此抛物线的解析式;分△PED△OAB和△DEP△OAB两种情况讨论,利用相似三角形的性质求得PE的长,再根据三角形的面积公式即可求得Q点的横坐标.
【详解】
(1)如图1,
设AB与y轴交于点M,则AM=2,OM=1,AB=5,
则OA=OC,
∵OE∥BC,
∴OE是△ABC的中位线,
∴AE=AB=,BC=2EO,
∴点E的坐标为(,),ME=,OM=1,
∴OE=,
∴BC=2OE=,
∵,
是直角三角形,
即,
所以BC是半圆的O的切线;
(2)四边形OBCD是平行四边形,
由图知: BC=OD=OA=,
∵OD∥BC,
∴四边形OBCD是平行四边形;
(3)①由(2)知:OD=OA=,
E为AB的中点,过点D作轴,则DN//ME,
∴Rt△ODNRt△OEM,
∴,
∴,
∴,,
∴点D的坐标为(,),
∵抛物线经过点D(,),且顶点为E(,),
∴设此抛物线的解析式为,
则
∴,
∴此抛物线的解析式为,
即,
如图,设抛物线对称轴交AC于F,
由(1)知:∠AOE=∠ACB=90,∠AEF=90,
∴∠OEF+∠AEO=90,∠A+∠AEO=90,
∴∠OEF=∠A,
∵以E,D,P为顶点的三角形与相似,
∴分△PED△OAB和△DEP△OAB两种情况讨论,
当△PED△OAB时,ED=OE+OD=
,即,
∴,
∵,
设点Q到PE的距离为h,
∴,即,
∴,
∴点Q的横坐标为或;
当△DEP△OAB时,ED=OE+OD=
,即,
∴,
∵,
设点Q到PE的距离为,
∴,即,
∴,
∴点Q的横坐标为或;
∴符合条件的Q点的横坐标为或或或.
【点睛】
本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,圆的切线的判定,相似三角形的性质和判定,勾股定理的逆定理,平行四边形的判定等知识点的应用,此题综合性比较强,有一定的难度,对学生提出较高的要求.注意:不要漏解,分类讨论思想的巧妙运用.
16.如图,在平面直角坐标系中,直线与x轴交于点A,与y轴交于点B,抛物线过点B且与直线相交于另一点.
(1)求抛物线的解析式;
(2)点P是抛物线上的一动点,当时,求点P的坐标;
(3)点在x轴的正半轴上,点是y轴正半轴上的一动点,且满足.
①求m与n之间的函数关系式;
②当m在什么范围时,符合条件的N点的个数有2个?
【答案】(1);(2)或(3,)或(-2,-3);(3)①;②0<m<
【解析】
【分析】
(1)利用一次函数求出A和B的坐标,结合点C坐标,求出二次函数表达式;
(2)当点P在x轴上方时,点P与点C重合,当点P在x轴下方时,AP与y轴交于点Q,求出AQ表达式,联立二次函数,可得交点坐标,即为点P;
(3)①过点C作CD⊥x轴于点D,证明△MNO∽△NCD,可得,整理可得结果;
②作以MC为直径的圆E,根据圆E与线段OD的交点个数来判断M的位置,即可得到m的取值范围.
【详解】
解:(1)∵直线与x轴交于点A,与y轴交于点B,
令x=0,则y=2,令y=0,则x=4,
∴A(4,0),B(0,2),
∵抛物线经过B(0,2),,
∴,解得:,
∴抛物线的表达式为:;
(2)当点P在x轴上方时,点P与点C重合,满足,
∵,
∴,
当点P在x轴下方时,如图,AP与y轴交于点Q,
∵,
∴B,Q关于x轴对称,
∴Q(0,-2),又A(4,0),
设直线AQ的表达式为y=px+q,代入,
,解得:,
∴直线AQ的表达式为:,联立得:
,解得:x=3或-2,
∴点P的坐标为(3,)或(-2,-3),
综上,当时,点P的坐标为:或(3,)或(-2,-3);
(3)①如图,∠MNC=90°,过点C作CD⊥x轴于点D,
∴∠MNO+∠CND=90°,
∵∠OMN+∠MNO=90°,
∴∠CND=∠OMN,又∠MON=∠CDN=90°,
∴△MNO∽△NCD,
∴,即,
整理得:;
②如图,∵∠MNC=90°,
以MC为直径画圆E,
∵,
∴点N在线段OD上(不含O和D),即圆E与线段OD有两个交点(不含O和D),
∵点M在y轴正半轴,
当圆E与线段OD相切时,
有NE=MC,即NE2=MC2,
∵M(0,m),,
∴E(,),
∴=,
解得:m=,
当点M与点O重合时,如图,
此时圆E与线段OD(不含O和D)有一个交点,
∴当0<m<时,圆E与线段OD有两个交点,
故m的取值范围是:0<m<.
【点睛】
本题是二次函数综合,考查了求二次函数表达式,相似三角形的判定和性质,圆周角定理,一次函数表达式,难度较大,解题时要充分理解题意,结合图像解决问题.
17.将抛物线向下平移6个单位长度得到抛物线,再将抛物线向左平移2个单位长度得到抛物线.
(1)直接写出抛物线,的解析式;
(2)如图(1),点在抛物线对称轴右侧上,点在对称轴上,是以为斜边的等腰直角三角形,求点的坐标;
(3)如图(2),直线(,为常数)与抛物线交于,两点,为线段的中点;直线与抛物线交于,两点,为线段的中点.求证:直线经过一个定点.
【答案】(1)抛物线的解析式为: y=x2-4x-2;抛物线的解析式为:y=x2-6;(2)点的坐标为(5,3)或(4,-2);(3)直线经过定点(0,2)
【解析】
【分析】
(1)根据函数图象上下平移:函数值上加下减;左右平移:自变量左加右减写出函数解析式并化简即可;
(2)先判断出点A、B、O、D四点共圆,再根据同弧所对的圆周角相等得到∠BDA=∠BOA=45°,从而证出是等腰直角三角形.设点A的坐标为(x,x2-4x-2),把DC和AC用含x的代数式表示出来,利用DC=AC列方程求解即可,注意有两种情况;
(3)根据直线(,为常数)与抛物线交于,两点,联立两个解析式,得到关于x的一元二次方程,根据根与系数的关系求出点M的横坐标,进而求出纵坐标,同理求出点N的坐标,再用待定系数法求出直线MN的解析式,从而判断直线MN经过的定点即可.
【详解】
解:(1)∵抛物线向下平移6个单位长度得到抛物线,再将抛物线向左平移2个单位长度得到抛物线,
∴抛物线的解析式为:y=(x-2)2-6,即y=x2-4x-2,
抛物线的解析式为:y=(x-2+2)2-6,即y=x2-6.
(2)如下图,过点A作AC⊥x轴于点C,连接AD,
∵是等腰直角三角形,
∴∠BOA =45°,
又∵∠BDO=∠BAO=90°,
∴点A、B、O、D四点共圆,
∴∠BDA=∠BOA=45°,
∴∠ADC=90°-∠BDA=45°,
∴是等腰直角三角形,
∴DC=AC.
∵点在抛物线对称轴右侧上,点在对称轴上,
∴抛物线的对称轴为x=2,
设点A的坐标为(x,x2-4x-2),
∴DC=x-2,AC= x2-4x-2,
∴x-2= x2-4x-2,
解得:x=5或x=0(舍去),
∴点A的坐标为(5,3);
同理,当点B、点A在x轴的下方时,
x-2= -(x2-4x-2),
x=4或x=-1(舍去),
∴点的坐标为(4,-2),
综上,点的坐标为(5,3)或(4,-2).
(3)∵直线(,为常数)与抛物线交于,两点,
∴,
∴x2-kx-6=0,
设点E的横坐标为xE,点F的横坐标为xF,
∴xE+xF=k,
∴中点M的横坐标xM==,
中点M的纵坐标yM=kx=,
∴点M的坐标为(,);
同理可得:点N的坐标为(,),
设直线MN的解析式为y=ax+b(a≠0),
将M(,)、N(,)代入得:
,
解得:,
∴直线MN的解析式为y= ·x+2(),
不论k取何值时(),当x=0时,y=2,
∴直线经过定点(0,2).
【点睛】
本题考查二次函数综合应用,熟练掌握图象平移的规律、判断点A、B、O、D四点共圆的方法、用待定系数法求函数解析式的步骤是解题的关键.
18.如图1,在平面直角坐标系中,点A的坐标是,在x轴上任取一点M.连接AM,分别以点A和点M为圆心,大于的长为半径作弧,两弧相交于G,H两点,作直线GH,过点M作x轴的垂线l交直线GH于点P.根据以上操作,完成下列问题.
探究:
(1)线段PA与PM的数量关系为________,其理由为:________________.
(2)在x轴上多次改变点M的位置,按上述作图方法得到相应点P的坐标,并完成下列表格:
猜想:
(3)请根据上述表格中P点的坐标,把这些点用平滑的曲线在图2中连接起来;观察画出的曲线L,猜想曲线L的形状是________.
验证:
(4)设点P的坐标是,根据图1中线段PA与PM的关系,求出y关于x的函数解析式.
应用:
(5)如图3,点,,点D为曲线L上任意一点,且,求点D的纵坐标的取值范围.
【答案】(1),线段垂直平分线上的点与这条线段两个端点的距离相等;(2)图见解析,抛物线;(3)见解析;(4);(5)
【解析】
【分析】
(1)由尺规作图的步骤可知,HG是AM的中垂线,结合中垂线的性质,即可得到答案;
(2)根据第(1)的作图方法,得到相应点P的位置,即可求解;
(3)用平滑的曲线作出图象,即可;
(4)过点P作轴于点E,用含x,y的代数式表示,,,结合勾股定理,即可得到答案;
(5)连接,由题意得当时,在的外接圆上,弧所对的圆心角为60°,的外接圆圆心为坐标原点O,设,求出b的值,进而即可求解.
【详解】
解:(1) 线段垂直平分线上的点与这条线段两个端点的距离相等
(2)
(3)草图见图2:形状:抛物线
(4)如图1,过点P作轴于点E,
,,
在中,
即
化简,得
∴y关于x的函数解析式为.
(5)连接,易得,又
∴为等边三角形,∴
当时,在的外接圆上,弧所对的圆心角为60°
其圆心在的垂直平分线y轴上,
∴的外接圆圆心为坐标原点O,
设,则,即 ①
又点D在该抛物线上
∴ ②
由①②联立解得:(舍去)
数形结合可得,
当时,点D的纵坐标的取值范围为
【点睛】
本题主要考查尺规作作中垂线,二次函数的图象和性质,圆周角定理,解题关键是:熟练掌握垂直平分线的性质定理,构造三角形的外接圆.
19.如图,已知,是的平分线,是射线上一点,.动点从点出发,以的速度沿水平向左作匀速运动,与此同时,动点从点出发,也以的速度沿竖直向上作匀速运动.连接,交于点.经过、、三点作圆,交于点,连接、.设运动时间为,其中.
(1)求的值;
(2)是否存在实数,使得线段的长度最大?若存在,求出的值;若不存在,说明理由.
(3)求四边形的面积.
【答案】(1)8cm;(2)存在,当t=4时,线段OB的长度最大,最大为;(3)
【解析】
【分析】
(1)根据题意可得,,由此可求得的值;
(2)过作,垂足为,则,设线段的长为,可得,,,根据可得,进而可得,由此可得,由此可得,则可得到答案;
(3)先证明是等腰直角三角形,由此可得,再利用勾股定理可得,最后根据四边形的面积即可求得答案.
【详解】
解:(1)由题可得:,.
∴.
(2)当时,线段的长度最大.
如图,过作,垂足为,则.
∵平分,
∴,
∴,.
设线段的长为,
则,,.
∵,
∴,
∴,
∴,
解得:.
∴.
∴当时,线段的长度最大,最大为.
(3)∵,
∴是圆的直径.
∴.
∵,
∴是等腰直角三角形.
∴
.
在中,.
∴四边形的面积
.
∴四边形的面积为.
【点睛】
本题考查了相似三角形的判定及性质,直径的判定及性质,二次函数的最值问题等相关知识,熟练掌握相关知识是解决本题的关键.
20如图,抛物线y=ax2+x+c经过点A(﹣1,0)和点C (0,3)与x轴的另一交点为点B,点M是直线BC上一动点,过点M作MP∥y轴,交抛物线于点P.
(1)求该抛物线的解析式;
(2)在抛物线上是否存在一点Q,使得△QCO是等边三角形?若存在,求出点Q的坐标;若不存在,请说明理由;
(3)以M为圆心,MP为半径作⊙M,当⊙M与坐标轴相切时,求出⊙M的半径.
【答案】(1)y=﹣x2+x+3;(2)不存在,理由见解析;(3)⊙M的半径为,,,
【解析】
【分析】
(1)已知抛物线y=ax2+x+c经过点A(﹣1,0)和点C(0,3),利用待定系数法即可求得抛物线解析式;
(2)在抛物线上找到一点Q,使得△QCO是等边三角形,过点Q作OM⊥OB于点M,过点Q作QN⊥OC于点N,根据△QCO是等边三角形,求得Q点坐标,再验证Q点是否在抛物线上;
(3)分四种情况①当⊙M与y轴相切,如图所示,令M点横坐标为t,PM=t,将PM用t表示出来,列出关于t的一元二次方程,求得t,进而求得半径;②⊙M与x轴相切,过点M作MN⊥OB于N,如图所示,令M点横坐标为m,因为PN=2MN,列出关于m的一元二次方程,即可求出m,同理③④种情况,进而求得⊙M的半径.
【详解】
(1)∵抛物线y=ax2+x+c经过点A(﹣1,0)和点C(0,3)
∴
解得
∴该抛物线的解析式为:y=﹣x2+x+3
故答案为:y=﹣x2+x+3
(2)在抛物线上找到一点Q,使得△QCO是等边三角形,过点Q作OM⊥OB于点M,过点Q作QN⊥OC于点N
∵△QCO是等边三角形,OC=3
∴CN=
∴NQ=
即Q(,)
当x=时,y=﹣×()2+×+3=≠
∴Q(,)不在抛物线上
y=﹣x2+x+3
故答案为:不存在,理由见解析
(3)①⊙M与y轴相切,如图所示
∵y=﹣x2+x+3
当y=0时,﹣x2+x+3=0
解得x1=-1,x2=4
∴B(4,0)
令直线BC的解析式为y=kx+b
解得
∴直线BC的解析式为
令M点横坐标为t
∵MP∥y轴,⊙M与y轴相切
∴t=﹣t2+t+3-
解得t=
⊙M的半径为
②⊙M与x轴相切,过点M作MN⊥OB于N,如图所示
令M点横坐标为m
∵PN=2MN
∴
解得m=1或m=4(舍去)
∴⊙M的半径为:
③当与轴相切时,如图3:
点与点重合时
半径
④当与轴相切时如图4:
设,
则,因
解得,(舍去)
半径
综上所述:的半径为,,,
【点睛】
本题考查了待定系数法求二次函数解析式,是二次函数的综合题,涉及了二次函数与几何问题,二次函数与圆的问题,其中考查了圆切线的性质.
21.我们把方程(x- m)2+(y-n)2=r2称为圆心为(m,n)、半径长为r的圆的标准方程.例如,圆心为(1,-2)、半径长为3的圆的标准方程是(x- 1)2+(y+2)2=9.在平面直角坐标系中,圆C与轴交于点A.B.且点B的坐标为(8.0),与y轴相切于点D(0, 4),过点A,B,D的抛物线的顶点为E.
(1)求圆C的标准方程;
(2)试判断直线AE与圆C的位置关系,并说明理由.
【答案】(1);(2)相切,理由见解析
【解析】
【分析】
(1)连接CD,CB,过C作CF⊥AB,分别表示出BF和CF,再在△BCF中利用勾股定理构造方程求解即可得到圆C半径以及点C坐标,从而得到标准方程;
(2)由(1)可得点A坐标,求出抛物线表达式,得到点E坐标,再求出直线AE的表达式,联立直线AE和圆C的表达式,通过判断方程根的个数即可得到两者交点个数,从而判断位置关系.
【详解】
解:连接CD,CB,过C作CF⊥AB,
∵点D(0,4),B(8,0),设圆C半径为r,圆C与y轴切于点D,
则CD=BC=OF=r,CF=4,
∵CF⊥AB,
∴AF=BF=8-r,
在△BCF中,,
即,
解得:r=5,
∴CD=OF=5,即C(5,4),
∴圆C的标准方程为:;
(2)由(1)可得:BF=3=AF,则OA=OB-AB=2,
即A(2,0),
设抛物线表达式为:,将A,B,D坐标代入,
,解得:,
∴抛物线表达式为:,
∴可得点E(5,),
设直线AE表达式为:y=mx+n,将A和E代入,
可得:,解得:,
∴直线AE的表达式为:,
∵圆C的标准方程为,
联立,
解得:x=2,
故圆C与直线AE只有一个交点,横坐标为2,
即圆C与直线AE相切.
【点睛】
本题考查了圆的新定义,二次函数,一次函数,切线的判定,垂径定理,有一定难度,解题的关键是利用转化思想,将求位置关系转化为方程根的个数问题.
x
…
0
1
2
3
…
y
…
0
3
4
3
0
…
M的坐标
…
…
P的坐标
…
…
M的坐标
…
…
P的坐标
…
…
相关试卷
这是一份2024年中考数学二轮题型突破练习题型9 二次函数综合题 类型10 二次函数与矩形有关的问题(专题训练)(2份打包,原卷版+教师版),文件包含2024年中考数学二轮题型突破练习题型9二次函数综合题类型10二次函数与矩形有关的问题专题训练原卷版doc、2024年中考数学二轮题型突破练习题型9二次函数综合题类型10二次函数与矩形有关的问题专题训练教师版doc等2份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。
这是一份2024年中考数学二轮题型突破练习题型9 二次函数综合题 类型9 二次函数与菱形有关的问题(专题训练)(2份打包,原卷版+教师版),文件包含2024年中考数学二轮题型突破练习题型9二次函数综合题类型9二次函数与菱形有关的问题专题训练原卷版doc、2024年中考数学二轮题型突破练习题型9二次函数综合题类型9二次函数与菱形有关的问题专题训练教师版doc等2份试卷配套教学资源,其中试卷共47页, 欢迎下载使用。
这是一份2024年中考数学二轮题型突破练习题型9 二次函数综合题 类型8 二次函数与平行四边形有关的问题(专题训练)(2份打包,原卷版+教师版),文件包含2024年中考数学二轮题型突破练习题型9二次函数综合题类型8二次函数与平行四边形有关的问题专题训练原卷版doc、2024年中考数学二轮题型突破练习题型9二次函数综合题类型8二次函数与平行四边形有关的问题专题训练教师版doc等2份试卷配套教学资源,其中试卷共103页, 欢迎下载使用。