【三轮冲刺】高考数学(大题预测)预测卷01 (原卷版)
展开(建议用时:60分钟 满分:77分)
四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.
15.(13分)
已知函数.
(1)若,当时,证明:.
(2)若,证明:恰有一个零点.
16.(15分)
某学校进行班级之间的中国历史知识竞赛活动,甲、乙两位同学代表各自班级以抢答的形式展开,共五道题,抢到并回答正确者得一分,答错则对方得一分,先得三分者获胜.每一次抢题且甲、乙两人抢到每道题的概率都是,甲乙正确回答每道题的概率分别为,,且两人各道题是否回答正确均相互独立.
(1)比赛开始,求甲先得一分的概率;
(2)求甲获胜的概率.
17.(15分)
如图,在四棱锥 中,四边形是等腰梯形,,,,.
(1)证明:平面平面;
(2)若,且,求二面角的正弦值.
18.(17分)
设抛物线,过焦点F的直线与C交于点A,B.当直线垂直于x轴时,.
(1)求C的方程;
(2)已知点,直线,分别与C交于点C,D.
①求证:直线过定点;
②求与面积之和的最小值.
19.(17分)
若函数的定义域、值域都是有限集合,,则定义为集合A上的有限完整函数.已知是定义在有限集合上的有限完整函数.
(1)求的最大值;
(2)当时,均有,求满足条件的的个数;
(3)对于集合M上的有限完整函数,定义“闭环函数”如下:,对,且,(注:,,).若,,,则称为“m阶闭环函数”.证明:存在一个闭环函数既是3阶闭环函数,也是4阶闭环函数(用列表法表示的函数关系).
【B组】
(建议用时:60分钟 满分:77分)
四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.
15.(13分)
已知函数.
(1)若函数的图象在处的切线与x轴平行,求函数的图象在处的切线方程;
(2)讨论函数的单调性.
16.(15分)
现有10个球,其中5个球由甲工厂生产,3个球由乙工厂生产,2个球由丙工厂生产.这三个工厂生产该类产品的合格率依次是,,.现从这10个球中任取1个球,设事件为“取得的球是合格品”,事件分别表示“取得的球是甲、乙、丙三个工厂生产的”.
(1)求;
(2)若取出的球是合格品,求该球是甲工厂生产的概率.
17.(15分)
如图,在四棱锥中,平面平面,四边形为等腰梯形,且,为等边三角形,平面平面直线.
(1)证明:平面;
(2)若与平面的夹角为,求四棱锥的体积.
18.(17分)
已知双曲线:()的左焦点为,,分别为双曲线的左、右顶点,顶点到双曲线的渐近线的距离为.
(1)求的标准方程;
(2)过点的直线与双曲线左支交于点(异于点),直线与直线:交于点,的角平分线交直线于点,证明:是的中点.
19.(17分)
已知集合(),对于,,定义A与B的差为(,,…,);A与B之间的距离为=++…+.
(1)若写出所有可能的A,B;
(2),证明:;
(3),证明:三个数中至少有一个是偶数.
【C组】
(建议用时:60分钟 满分:77分)
四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.
已知函数.
(1)若,求曲线在点处的切线方程;
(2)若在上恒成立,求实数a的取值范围.
16.(15分)
某校举行知识竞赛,最后一个名额要在A,B两名同学中产生,测试方案如下:A,B两名学生各自从给定的4个问题中随机抽取3个问题作答,在这4个问题中,已知A能正确作答其中的3个,B能正确作答每个问题的概率都是,A,B两名同学作答问题相互独立.
(1)求A,B两名同学恰好共答对2个问题的概率;
(2)若让你投票决定参赛选手,你会选择哪名学生,简要说明理由.
17.(15分)
如图,在中,分别为边上一点,且,将沿折起到的位置,使得为上一点,且.
(1)求证:平面;
(2)若为线段上一点(异于端点),且二面角的正弦值为,求的值.
18.(17分)
已知椭圆的离心率为,依次连接四个顶点得到的图形的面积为.
(1)求椭圆C的方程;
(2)过直线上一点P作椭圆C的两条切线,切点分别为M,N,求证:直线过定点.
19.(17分)
若数列满足:存在和,使得对任意和,都有,则称数列为“数列”;如果数列满足:存在,使得对任意,都有,则称数列为“数列”;
(1)在下列情况下,分别判断是否“数列”,是否“数列”?①,,;②,;
(2)若数列,是“数列”,其中且,求的所有可能值;
(3)设“数列”和“数列”的各项均为正数,定义分段函数,如下:记为“不超过的最大正整数”,证明:若是周期函数,则是“数列”.
【三轮冲刺】高考数学 押题预测卷01 (解析版): 这是一份【三轮冲刺】高考数学 押题预测卷01 (解析版),共13页。试卷主要包含了本试卷分第Ⅰ卷两部分,已知,则,已知函数的部分图象如图所示,则,已知复数,则下列说法正确的是等内容,欢迎下载使用。
【三轮冲刺】高考数学 押题预测卷01 (原卷版): 这是一份【三轮冲刺】高考数学 押题预测卷01 (原卷版),共5页。试卷主要包含了本试卷分第Ⅰ卷两部分,已知,则,已知函数的部分图象如图所示,则,已知复数,则下列说法正确的是等内容,欢迎下载使用。
【三轮冲刺】高中数学(大题预测)预测卷02 (解析版): 这是一份【三轮冲刺】高中数学(大题预测)预测卷02 (解析版),共19页。