【专项复习】高考数学专题10 数列求和(插入新数列混合求和)(题型训练).zip
展开TOC \ "1-2" \h \u \l "_Tc27030" 一、典型题型 PAGEREF _Tc27030 \h 1
\l "_Tc28087" 题型一:插入新数列构成等差 PAGEREF _Tc28087 \h 1
\l "_Tc27898" 题型二:插入新数列构成等比 PAGEREF _Tc27898 \h 3
\l "_Tc23663" 题型三:插入新数混合 PAGEREF _Tc23663 \h 4
\l "_Tc21960" 二、专题10 数列求和(插入新数列混合求和)专项训练 PAGEREF _Tc21960 \h 5
一、典型题型
题型一:插入新数列构成等差
例题1.(2023秋·湖北·高三校联考阶段练习)已知数列的前项和为,且满足:
(1)求数列的通项公式;
(2)在与之间插入个数,使这个数组成一个公差为的等差数列,在数列中是否存在三项(其中成等差数列)成等比数列?若存在,求出这三项;若不存在,请说明理由.
例题2.(2023·全国·高二课堂例题)已知等差数列的首项,公差,在中每相邻两项之间都插入3个数,使它们和原数列的数一起构成一个新的等差数列.
(1)求数列的通项公式.
(2)是不是数列的项?若是,它是的第几项?若不是,说明理由.
例题3.(2023·全国·高三专题练习)已知正项等比数列和其前n项和满足.
(1)求的通项公式;
(2)在和之间插入m个数,使得这个数依次构成一个等差数列,设此等差数列的公差为,求满足的正整数m的最小值.
例题4.(2023春·吉林长春·高二长春十一高校考期末)已知等比数列的前n项和为,.
(1)求数列的通项公式;
(2)在与之间插入n个数,使这个数组成一个等差数列,记插入的这n个数之和为,若不等式对一切恒成立,求实数的取值范围;
例题5.(2023春·广东佛山·高二南海中学校考期中)已知数列的前项和为,且.
(1)求及数列的通项公式;
(2)在与之间插入个数,使得这个数依次组成公差为的等差数列,求数列的前项和.
题型二:插入新数列构成等比
例题1.(2023·全国·高二专题练习)在数列中抽取部分项(按原来的顺序)构成一个新数列,记为,再在数列插入适当的项,使它们一起能构成一个首项为1,公比为3的等比数列.若,则数列中第项前(不含)插入的项的和最小为( )
A.30B.91C.273D.820
例题2.(2023·全国·高三专题练习)在和之间插入三个数,使这五个数组成正项等比数列,则中间三个数的积等于 .
例题3.(2023·高二课时练习)设,在a,b之间插入个实数,,…,,使得这个数成等差数列,则有结论成立.若,在a,b之间插入个正数,,…,,使得这个数成等比数列,则有相应的结论 成立.
例题4.(2023·全国·高二专题练习)回答下面两个问题
(1)在等差数列中,已知,,求a1与Sn .
(2)在2与64中间插入4个数使它们成等比数列,求该数列的通项公式.
例题5.(2023春·福建·高二校联考阶段练习)数列的前项和为且当时,成等差数列.
(1)计算,猜想数列的通项公式并加以证明;
(2)在和之间插入个数,使这个数组成一个公差为的等差数列,在数列中是否存在3项(其中成等差数列)成等比数列?若存在,求出这样的3项;若不存在,请说明理由.
题型三:插入新数混合
例题1.(2023春·湖北荆门·高二统考期末)已知各项均为正数的数列满足,.其中是数列的前项和.
(1)求数列的通项公式;
(2)在和中插入个相同的数,构成一个新数列,求的前100项和.
例题2.(2023·吉林通化·梅河口市第五中学校考模拟预测)为数列的前项和,已知,且.
(1)求数列的通项公式;
(2)数列依次为:,规律是在和中间插入项,所有插入的项构成以3为首项,3为公比的等比数列,求数列的前100项的和.
例题3.(2023·全国·高三专题练习)设等比数列的首项为,公比为(为正整数),且满足是与的等差中项;数列满足(,).
(1)求数列的通项公式;
(2)试确定的值,使得数列为等差数列;
(3)当为等差数列时,对每个正整数,在与之间插入个2,得到一个新数列.设是数列的前项和,试求.
例题4.(2023·全国·学军中学校联考二模)设数列满足.
(1)求数列的通项公式;
(2)在数列的任意与项之间,都插入个相同的数,组成数列,记数列的前项的和为,求的值.
例题5.(2023·全国·高三专题练习)记数列的前项和为,对任意正整数,有,且.
(1)求数列的通项公式;
(2)对所有正整数,若,则在和两项中插入,由此得到一个新数列,求的前40项和.
二、专题10 数列求和(插入新数列混合求和)专项训练
一、单选题
1.(2023春·江苏南通·高二期末)已知数列满足,在和之间插入n个1,构成数列:,则数列的前18项的和为( )
A.43B.44C.75D.76
2.(2023·安徽滁州·校考模拟预测)已知数列的通项公式为,保持数列中各项顺序不变,对任意的,在数列的与项之间,都插入个相同的数,组成数列,记数列的前n项的和为,则( )
A.4056B.4096C.8152D.8192
3.(2023·全国·高三专题练习)习近平总书记在党的二十大报告中提出:坚持以人民为中心发展教育,加快建设高质量教育体系,发展素质教育,促进教育公平,加快义务教育优质均衡发展和城乡一体化.某师范大学学生会为贯彻党的二十大精神,成立“送教下乡志愿者服务社”,分期分批派遣大四学生赴乡村支教.原计划第一批派遣20名学生,以后每批都比上一批增加5人.由于志愿者人数暴涨,服务社临时决定改变派遣计划,具体规则为:把原计划拟派遣的各批人数依次构成的数列记为,在数列的任意相邻两项与(,2,)之间插入个3,使它们和原数列的项构成一个新的数列.按新数列的各项依次派遣支教学生.记为派遣了70批学生后支教学生的总数,则的值为( )
A.387B.388C.389D.390
4.(2023·全国·高三专题练习)通过以下操作得到一系列数列:第1次,在2,3之间插入2与3的积6,得到数列2,6,3;第2次,在2,6,3每两个相邻数之间插入它们的积,得到数列2,12,6,18,3;类似地,第3次操作后,得到数列:2,24,12,72,6,108,18,54,3.按上述这样操作11次后,得到的数列记为,则的值是( )
A.6B.12C.18D.108
二、多选题
5.(2023·全国·高三专题练习)十二平均律是我国明代音乐理论家和数学家朱载堉发明的.明万历十二年(公元1584年).他写成《律学新说》,提出了十二平均律的理论.十二平均律的数学意义是:在1和2之间插入11个数,使包含1和2的这13个数依次成递增的等比数列,记插入的11个数之和为,插入11个数后这13个数之和为,则依此规则,下列说法正确的是( ).
A.插入的第8个数为
B.插入的第5个数是插入的第1个数的倍
C.
D.
三、填空题
6.(2023春·高二校考课时练习)在1和17之间插入n个数,使这个数成等差数列,若这n个数中第一个为a,第n个为b,当取最小值时, .
7.(2023秋·江苏盐城·高二江苏省阜宁中学校联考期末)已知数列的通项公式,在数列的任意相邻两项与之间插入个4,使它们和原数列的项构成一个新的数列,记新数列的前n项和为,则的值为 .
四、解答题
8.(2023春·安徽芜湖·高二统考期末)已知等比数列的前项和为,且满足.
(1)求数列的通项;
(2)在和之间插入个数,使这个数组成一个公差为的等差数列,求证:.
9.(2023春·河北石家庄·高三石家庄二中校考阶段练习)数列的前项和为且当时,成等差数列.
(1)求数列的通项公式;
(2)在和之间插入个数,使这个数组成一个公差为的等差数列,在数列中是否存在3项(其中成等差数列)成等比数列?若存在,求出这样的3项;若不存在,请说明理由.
10.(2023·浙江·校联考模拟预测)已知数列的前项和为,且.
(1)求的通项公式;
(2)保持中各项先后顺序不变,在与之间插入个1,使它们和原数列的项构成一个新的数列,记的前n项和为,求的值(用数字作答).
11.(2023春·江苏扬州·高二扬州中学校考期中)已知数列是等差数列,其前和为,,数列满足
(1)求数列,的通项公式;
(2)若对数列,, 在与之间插入个2(),组成一个新数列,求数列的前2023项的和.
12.(2023秋·江苏南通·高三统考期末)已知公差大于0的等差数列满足,.
(1)求的通项公式;
(2)在与之间插入个2,构成新数列,求数列的前110项的和.
【专项复习】高考数学专题07 数列求和(错位相减法)(题型训练).zip: 这是一份【专项复习】高考数学专题07 数列求和(错位相减法)(题型训练).zip,文件包含专项复习高考数学专题07数列求和错位相减法题型训练原卷版docx、专项复习高考数学专题07数列求和错位相减法题型训练解析版docx等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。
【专项复习】高考数学专题06 数列求和(裂项相消法)(题型训练).zip: 这是一份【专项复习】高考数学专题06 数列求和(裂项相消法)(题型训练).zip,文件包含专项复习高考数学专题06数列求和裂项相消法题型训练原卷版docx、专项复习高考数学专题06数列求和裂项相消法题型训练解析版docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。
【专项复习】高考数学专题05 数列求和(倒序相加法、分组求和法)(题型训练).zip: 这是一份【专项复习】高考数学专题05 数列求和(倒序相加法、分组求和法)(题型训练).zip,文件包含专项复习高考数学专题05数列求和倒序相加法分组求和法题型训练原卷版docx、专项复习高考数学专题05数列求和倒序相加法分组求和法题型训练解析版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。