终身会员
搜索
    上传资料 赚现金
    广东省茂名市电白区2023-2024学年八年级下学期期中数学试题(含解析)
    立即下载
    加入资料篮
    广东省茂名市电白区2023-2024学年八年级下学期期中数学试题(含解析)01
    广东省茂名市电白区2023-2024学年八年级下学期期中数学试题(含解析)02
    广东省茂名市电白区2023-2024学年八年级下学期期中数学试题(含解析)03
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广东省茂名市电白区2023-2024学年八年级下学期期中数学试题(含解析)

    展开
    这是一份广东省茂名市电白区2023-2024学年八年级下学期期中数学试题(含解析),共18页。试卷主要包含了是下列不等式的一个解,不等式的解集是,下列结论中错误的是等内容,欢迎下载使用。

    注意事项:
    1.答题前填写好自己的姓名、试室号、班别、学校等信息;2.请将答案正确填写在答题卡上.
    一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.
    1.2023年10月12日,习近平总书记在进一步推动长江经济带高质量发展座谈会上强调:“要把产业绿色转型升级作为重中之重,加快培育壮大绿色低碳产业.”下列绿色图标中既是轴对称图形又是中心对称图形的是( )
    A.B.C.D.
    2.是下列不等式( )的一个解.
    A.B.C.D.
    3.不等式的解集是( )
    A.B.C.D.
    4.下列结论中错误的是( )
    A.由,得B.由,得
    C.由,得D.由,得
    5.如图,数轴上表示的解集是下列哪个不等式的解集( )

    A.B.C.D.
    6.如图,在中,是边的垂直平分线,垂足为E,交边于D点,若的周长为,则的长为( )
    A.B.C.D.
    7.已知等腰三角形的一个内角为50°,则它的顶角为( )
    A.50°B.65°C.50°或65°D.50°或80°
    8.已知点在平面直角坐标系的第四象限,则的取值范围在数轴上可表示为( )
    A. B.
    C. D.
    9.如图,一次函数的图象过两点,则关于x的不等式的解集是( )
    A.B.C.D.
    10.如图,将绕点A逆时针旋转一定角度,得到,若,,且,则的度数为( )
    A.B.C.D.
    二、填空题:本大题共6小题,每小题3分,共18分.
    11.某种药品的说明书上贴有如图所示的标签,一次服用这种药品的剂量范围是 .
    12.不等式的非负整数解为 .
    13.若不等式组的解集是,则m的取值范围是 .
    14.如图,在中,,点D在上,于点交与点F.若,则 .
    15.如图,在△ABC中,∠BAC=110°,若MP、NQ分别垂直平分AB、AC,则∠PAQ=
    16.如图,射线是的平分线,C是射线上一点,于点F.若D是射线上一点,且,则的面积是 .
    三、解答题(一):本大题共3小题,第17题10分,第18题10分,第19题6分,共26分.
    17.解不等式:
    (1)
    (2)
    18.解不等式组:
    (1)
    (2)
    19.已知在平面直角坐标系中的位置如图所示.
    (1)将向右平移4个单位,作出平移后的;
    (2)将绕点O逆时针旋转,作出旋转后的;
    四、解答题(二):本大题共3小题,第20题8分,第21题7分,第22题7分,共22分.
    20.已知直线与直线相交于点.
    (1)求m,n的值;
    (2)请结合图象直接写出不等式的解集;
    (3)求直线、直线与y轴围成的三角形的面积.
    21.围棋起源于中国,古代称为“弈”,是棋类鼻祖,围棋距今已有4000多年的历史,中国象棋也是中华民族的文化瑰宝,它源远流长,趣味浓厚,基本规则简明易懂.某学校为活跃学生课余生活,欲购买一批象棋和围棋,已知购买3副象棋和2副围棋共需160元,购买2副象棋和3副围棋共需165元.
    (1)求每副象棋和围棋的价格;
    (2)若学校准备购买象棋和围棋总共100副,且总费用不超过3225元,则最多能购买多少副围棋?
    22.已知:如图,,垂足分别为与相交于点P.
    求证:.
    五、解答题(三):本大题共2小题,每小题12分,共24分.
    23.综合探究:
    在中,,将在平面内绕点B顺时针旋转(旋转角不超过),得到,其中点A的对应点为点D,连接.
    (1)如图1,试猜想与之间满足的等量关系,并给出证明;
    (2)如图2,若点D在边上,,求的长.
    24.综合运用:
    【模型建立】(1)如图,等腰中,,,直线经过点,过点作于点,过点作于点,求证:.
    【模型应用】(2)如图,已知直线与轴交于点,与轴交于点,将直线绕点逆时针旋转至直线,求直线的函数表达式;
    参考答案与解析
    1.B
    【分析】本题主要考查了轴对称图形和中心对称图形的识别,根据轴对称图形和中心对称图形的定义进行逐一判断即可:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;把一个图形绕着某一个点旋转,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.
    【解答】解:A、不是轴对称图形,也不是中心对称图形,不符合题意;
    B、既是轴对称图形,也是中心对称图形,符合题意;
    C、不是轴对称图形,是中心对称图形,不符合题意;
    D、是轴对称图形,不是中心对称图形,不符合题意;
    故选B.
    2.D
    【分析】本题考查了不等式的解,解题的关键是理解不等式的解的意义;把分别代入各选项判定即可;
    【解答】解:、当时,,故本选项不符合题意;
    、当时,,故本选项不符合题意;
    、当时,,故本选项不符合题意;
    、当时,,故本选项符合题意;
    故选:.
    3.B
    【分析】本题考查了解一元一次不等式,根据解一元一次不等式的方法即可求解,熟练掌握一元一次不等式的解法是解题的关键.
    【解答】解:,
    解得:,
    故选B.
    4.D
    【分析】本题主要考查了不等式的基本性质,掌握不等式的基本性质是解题的关键;根据不等式的基本性质依次判定即可;
    【解答】解:、由,不等式两边同乘以,得,故本选项不符合题意;
    、由,不等式两边同加上c,得,故本选项不符合题意;
    、由,不等式两边同乘以,得,故本选项不符合题意;
    、由,不等式两边同乘以a,当字母a为负数或0时,不成立,故本选项符合题意;
    故选:.
    5.D
    【分析】先解每一个选项不等式,再根据利用数轴表示不等式的解集的方法判断即可;
    【解答】A.的解集为,不符合题意;
    B.的解集为,不符合题意;
    C.的解集为,不符合题意;
    D.的解集为,符合题意;
    故选择:D
    【点拨】本题考查的是解一元一次不等式并再数轴上表示出不等式的解集,熟练掌握利用数轴表示不等式解集的方法是解题的关键.
    6.C
    【分析】本题考查线段的垂直平分线的性质,根据垂直平分线上的点到线段两端的距离相等可得,结合,通过等量代换即可求解.
    【解答】解:的周长为,

    是边的垂直平分线,



    故选C.
    7.D
    【分析】有两种情况(顶角是50°和底角是50°时),由等边对等角求出底角的度数,用三角形的内角和定理即可求出顶角的度数.
    【解答】如图所示,△ABC中,AB=AC.
    有两种情况:
    当顶角∠A=50°时
    ∠B=∠C=
    当底角是50°时,
    ∵AB=AC,
    ∴∠B=∠C=50°,
    ∵∠A+∠B+∠C=180°,
    ∴∠A=180°-50°-50°=80°,
    ∴这个等腰三角形的顶角为50°和80°.
    故正确选项为:D
    【点拨】本题考查了等腰三角形的性质和三角形的内角和定理的理解和掌握,能对问题正确地进行分类讨论是解答此题的关键.
    8.A
    【分析】根据点P在第四象限可得横坐标为正,纵坐标为负,由此列出不等式组,解不等式组即可.
    【解答】解:∵点在平面直角坐标系的第四象限,
    ∴a-1>0且-a<0,
    解得:a>1,
    把解集在数轴上表示为:

    故选A.
    【点拨】本题考查象限内点的坐标的特点,熟练掌握每个象限内点的坐标的特点是解题关键.
    9.A
    【分析】本题考查了一次函数图象与一元一次不等式的关系,数形结合是解答本题的关键.直接根据图象解答即可.
    【解答】解:由图象可知,关于x的不等式的解集是.
    故选:A.
    10.C
    【分析】本题考查旋转的性质,根据旋转的性质得到,,三角形的内角和求出的度数,再根据角的和差关系求出即可.
    【解答】解:∵旋转,
    ∴,,
    ∵,
    ∴,
    ∴;
    故选C.
    11.
    【分析】本题考查了一元一次不等式组的应用,设一次服用的剂量为,根据题意可得,,解不等式组即可求解,由实际问题中的不等关系列出不等式,通过解不等式组可以得到实际问题的答案.
    【解答】解:设一次服用的剂量为,
    根据题意,得:,,
    解得,,
    则一次服用这种药品的剂量范围是,
    故答案为:.
    12.0,1,2
    【分析】本题考查解一元一次不等式,能够熟练地求出一元一次不等式的解集是解题的关键.
    求出一元一次不等式的解集,根据要求写出符合要求的数即可.
    【解答】解:,
    移项得,
    合并同类项得,
    系数化为1得,,
    ∴非负整数为:0,1,2.
    故答案为:0,1,2.
    13.
    【分析】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到,结合不等式组的解集可得答案.
    【解答】解:,
    解不等式①得:
    ∵不等式组的解集是,
    ∴.
    故答案为:
    14.##42度
    【分析】本题主要考查了余角的性质,直角三角形的性质,熟练掌握直角三角形两锐角互余,等角的余角相等是解题的关键;利用等角的余角相等和已知角可求出∠EDB,从而可求得∠EDF;
    【解答】,

    故答案为:;
    15.40°
    【分析】由线段垂直平分线的性质可知,.根据三角形内角和定理即可求出,即得出,从而根据即可求出答案.
    【解答】∵MP、NQ分别垂直平分AB、AC,
    ∴,.
    ∵,即,
    ∴,
    ∴,
    ∴.
    故答案为:
    【点拨】本题考查线段垂直平分线的性质和三角形内角和定理.利用数形结合的思想是解题关键.
    16.
    【分析】本题主要考查了角平分线的性质定理,熟练掌握角平分线上的点到角两边的距离相等是解题的关键.
    过点作于点,根据角平分线的性质定理,即可求解.
    【解答】解:如图,过点作于点,
    射线是的平分线,,,
    ∴,
    ∴的面积是.
    故答案为:.
    17.(1)
    (2)
    【分析】本题主要考查解一元一次不等式,理解和掌握不等式的性质是解题的关键.
    (1)根据一元一次不等式的性质以及解一元一次不等式的法则即可求解;
    (2)根据一元一次不等式的性质以及解一元一次不等式的法则即可求解.
    【解答】(1)解:;
    去括号,得,
    合并同类项,得,
    移项,得,
    系数化为,得;
    (2);
    去分母,得,
    移项,得,
    合并同类项,得,
    系数化为,得.
    18.(1)
    (2)无解
    【分析】本题考查了一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解答本题的关键.
    (1)先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可得到不等式组的解集;
    (2)先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可得到不等式组的解集.
    【解答】(1)原不等式组可化为,
    解不等式①,得.
    解不等式②,得.
    则不等式组的解集为.
    (2)
    解不等式①,得,
    解不等式②,得.
    则原不等式组无解.
    19.(1)见解析
    (2)见解析
    【分析】本题考查了作图(平移与旋转):
    (1)根据平移的性质即可求解;
    (2)根据旋转的性质即可求解;
    熟练掌握平移的性质及旋转的性质是解题的关键.
    【解答】(1)解:根据平移的性质得:
    如图所示,即为所求.
    (2)根据旋转的性质得,
    如图所示,即为所求:
    20.(1)
    (2)
    (3)
    【分析】本题考查一次函数与一元一次不等式,一次函数与几何图形的综合应用,正确的求出函数解析式,利用数形结合的思想求解,是解题的关键.
    (1)待定系数法求解即可;
    (2)图象法解不等式即可;
    (3)利用面积公式进行求解即可.
    【解答】(1)解:把代入得:
    ,解得:;
    把,代入得:,解得;
    (2)由图象可知:不等式的解集为:;
    (3)∵,
    ∴当时,,故,
    ∵,
    ∴当时,,解得:,则,
    ∴直线、直线与y轴围成的三角形的面积为:.
    21.(1)每副象棋的价格为30元,每副围棋的价格为35元
    (2)最多能购买45副围棋
    【分析】本题考查二元一次方程组的实际应用,一元一次不等式的实际应用,找准数量关系,正确的列出方程组和不等式,是解题的关键.
    (1)设每副象棋的价格为x元,每副围棋的价格为y元,根据购买3副象棋和2副围棋共需160元,购买2副象棋和3副围棋共需165元,列出方程组进行计算即可;
    (2)设购买m副围棋,则购买副象棋,根据总费用不超过3225元,列出不等式进行求解即可.
    【解答】(1)解:设每副象棋的价格为x元,每副围棋的价格为y元.
    依题意得,解得.
    答:每副象棋的价格为30元,每副围棋的价格为35元.
    (2)设购买m副围棋,则购买副象棋.
    依题意得:,解得.
    答:最多能购买45副围棋.
    22.见解析
    【分析】本题考查了全等三角形的性质和判定,解题的关键是熟练掌握全等三角形的性质和判定,正确的作出辅助线;连结,先证根据,证明,得,再根据,证明,得,进而可证;
    【解答】证明:连结,


    在和中,

    ∴,
    ∴,
    在和中,

    ∴,



    23.(1),理由见解析
    (2)10
    【分析】(1)由旋转的性质可得可得,由平行线的性质可得,然后根据等量代换即可解答;
    (2)过点D作于点E,由旋转的性质可得,,可证是等边三角形,由直角三角形的性质可求的长,由勾股定理可求的长,然后根据求解即可.
    【解答】(1),理由如下:
    ∵在平面内绕点B顺时针旋转(旋转角不超过),得到,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴.
    (2)如图,过点D作于点F,

    ∵在平面内绕点B顺时针旋转(旋转角不超过),得到,
    ∴,,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴是等边三角形,
    ∴,且,
    ∴,
    ∴,
    在中,,
    ∴.
    【点拨】本题考查了旋转的性质,平行线的性质,等边三角形的判定与性质,勾股定理等知识点,熟练运用旋转的性质解决问题是本题的关键.
    24.(1)见解析;(2)
    【分析】(1)先证明,进而用即可证明;
    (2)作交直线于点,作轴于点,由旋转得,则,由(1)可得,求解两点坐标,得到长度,确定坐标,设直线的函数表达式,把代入,求解即可.
    【解答】解:(1)证明∶ 于点 于点,
    ,,

    又,

    (2)解∶ 如图,作交直线于点,作轴于点,
    由旋转,


    ∴由(1)可得,

    直线,当时, 则,
    解得;
    当时,,




    设直线的函数表达式为,
    把代入,
    得 , 解得 ,
    直线的函数表达式为.
    【点拨】本题考查了全等三角形的性质与判定,等腰三角形的性质和判定,一次函数的应用,待定系数法求函数解析式,熟练掌握相关知识是解题的关键.
    用法服量:口服,每天,分次服用
    规格:□□□□□
    贮藏:□□□□□
    相关试卷

    广东省茂名市电白区2023-2024学年七年级下学期期中数学试题(原卷版+解析版): 这是一份广东省茂名市电白区2023-2024学年七年级下学期期中数学试题(原卷版+解析版),文件包含广东省茂名市电白区2023-2024学年七年级下学期期中数学试题原卷版docx、广东省茂名市电白区2023-2024学年七年级下学期期中数学试题解析版docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。

    广东省茂名市电白区2023-2024学年八年级下学期期中数学试题: 这是一份广东省茂名市电白区2023-2024学年八年级下学期期中数学试题,共10页。试卷主要包含了是下列不等式的一个解,不等式的解集是,下列结论中错误的是等内容,欢迎下载使用。

    广东省茂名市电白区2023-2024学年八年级上学期期中数学试题: 这是一份广东省茂名市电白区2023-2024学年八年级上学期期中数学试题,共8页。试卷主要包含了 下列各数中,是无理数是, 在平面直角坐标系中,点在, 下列各组数中,属于勾股数的是, 下列运算正确的是, 若点A与点B关于x轴对称,则, 若函数是一次函数,则m的值为, 已知,,则等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map