年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    (典例创新题)环形路线(奥数培优)-2023-2024学年六年级下册小升初数学思维拓展提升卷(通用版)

    (典例创新题)环形路线(奥数培优)-2023-2024学年六年级下册小升初数学思维拓展提升卷(通用版)第1页
    (典例创新题)环形路线(奥数培优)-2023-2024学年六年级下册小升初数学思维拓展提升卷(通用版)第2页
    (典例创新题)环形路线(奥数培优)-2023-2024学年六年级下册小升初数学思维拓展提升卷(通用版)第3页
    还剩37页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    (典例创新题)环形路线(奥数培优)-2023-2024学年六年级下册小升初数学思维拓展提升卷(通用版)

    展开

    这是一份(典例创新题)环形路线(奥数培优)-2023-2024学年六年级下册小升初数学思维拓展提升卷(通用版),共40页。

    2.两人在环形跑道上跑步 ,两人从同一地点出发,小明每秒跑3米,小雅每秒跑4米,反向而行,45秒后两人相遇。如果同向而行,几秒后两人再次相遇。
    3.甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地。求甲原来的速度。
    4.一个圆周长90厘米,3个点把这个圆周分成三等分,3只爬虫A,B,C分别在这3个点上.它们同时出发,按顺时针方向沿着圆周爬行.A的速度是10厘米/秒,B的速度是5厘米/秒,C的速度是3厘米/秒,3只爬虫出发后多少时间第一次到达同一位置?
    5.如图,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.
    6.如图,学校操场的400米跑道中套着300米小跑道,大跑道与小跑道有200米路程相重.甲以每秒6米的速度沿大跑道逆时针方向跑,乙以每秒4米的速度沿小跑道顺时针方向跑,两人同时从两跑道的交点处出发,当他们第二次在跑道上相遇时,甲共跑了多少米?
    7.公园环湖跑道长3600米,淘气和爸爸两人同时反方向跑步,淘气每分钟跑250米,爸爸每分钟跑350米。
    (1)估计两人在何处相遇,在环形图中标出来。
    (2)多长时间后两人相遇?
    8.有甲、乙、丙3人,甲每分钟行走120米,乙每分钟行走100米,丙每分钟行走70米。如果3个人同时同向,从同地出发,沿周长是300米的圆形跑道行走,那么多少分钟之后3人又可以相聚?
    9.下图中有两个圆只有一个公共点A,大圆直径48厘米,小圆直径30厘米.两只甲虫同时从A点出发,按箭头所指的方向以相同速度分别沿两个圆爬行.问:当小圆上甲虫爬了几圈时,两只甲虫首次相距最远?
    10.小林和小军沿着公园的环湖跑道跑步,跑道一圈的长度是4500m。他们两人同时从同一地点反方向跑步,如图所示。小林每分跑170m,小军每分跑130m,多长时间后两人相遇?
    11.绕湖一周是24千米,小张和小王从湖边某一地点同时出发反向而行.小王以每小时4千米的速度每走1小时后休息5分钟,小张以每小时6千米的速度每走50分钟后休息10分钟.两人出发后经过多长时间第一次相遇?
    12.在一圆形跑道上,甲从 A 点、乙从 B 点同时出发反向而行,6 分后两人相遇,再过4 分甲到达 B 点,又过 8 分两人再次相遇.甲、乙环行一周各需要多少分?
    13.甲和乙两人分别从圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长?
    14.甲用45秒可绕一环行跑道跑一圈,乙与甲同时从同地反向跑,每隔15秒,与甲相遇一次,乙跑完一圈用多少秒?
    15.在一条长400米的环形跑道上,正在进行一场5000米的长跑比赛.1号队员的平均跑步速度是每秒6米,2号队员平均每分钟跑0.8圈.当1号队员与2号队员在比赛开始一段时间后又并肩而跑的时候,l号队员距离终点还有多远?
    16.下图中有两个圆只有一个公共点A,大圆直径48厘米,小圆直径30厘米.两只甲虫同时从A点出发,按箭头所指的方向以相同速度分别沿两个圆爬行.问:当小圆上甲虫爬了几圈时,两只甲虫首次相距最远?
    17.如图,两只小爬甲和乙虫从A点出发,沿长方形ABCD的边,按箭头方向爬行,在距C点32厘米的E点它们第一次相遇,在距D点16厘米的F点第二次相遇,在距A点16厘米的G点第三次相遇,求长方形的边AB的长。
    18.已知猫跑5步的路程与狗跑3步的路程相同;猫跑7步的路程与兔跑5步的路程相同。而猫跑3步的时间与狗跑5步的时间相同;猫跑5步的时间与兔跑7步的时间相同,猫、狗、兔沿着周长为300米的圆形跑道,同时同向同地出发。问当它们出发后第一次相遇时各跑了多少路程?
    19.如图是一个跑道的示意图,沿走一圈是米,沿走一圈是米,其中到 的直线距离是米.甲、乙二人同时从点出发练习长跑,甲沿的小圈跑,每米用秒,乙沿的大圈跑,每米用秒,问:
    乙跑第几圈时第一次与甲相遇?
    出发多长时间甲、乙再次在相遇?
    20.下如右图所示,某单位沿着围墙外面的小路形成一个边长300米的正方形.甲、乙两人分别从两个对角处沿逆时针方向同时出发.如果甲每分走90米,乙每分走70米,那么经过多少时间甲才能看到乙?
    21. 三个环行跑道如图排列,每个环行跑道周长为210厘米;甲、乙两只爬虫分别从、两地按箭头所示方向出发,甲爬虫绕1、2号环行跑道作“8”字形循环运动,乙爬虫绕3、2号环行跑道作“8”字形循环运动,已知甲、乙两只爬虫的速度分别为每分钟20厘米和每分钟l5厘米,甲、乙两爬虫第二次相遇时,甲爬虫爬了多少厘米?
    22.如图,在长为490米的环形跑道上,A、B两点之间的跑道长50米,甲、乙两人同时从A、B两点出发反向奔跑。两人相遇后,乙立刻转身与甲同向奔跑,同时甲把速度提高了25%,乙把速度提高了20%。结果当甲跑到点A时,乙恰好跑到了点B。如果以后甲、乙的速度和方向都不变,那么当甲追上乙时,从一开始算起,甲一共跑了多少米?
    23.2000年华校入学试题)甲、乙两车同时从同一点出发,沿周长6千米的圆形跑道以相反的方向行驶.甲车每小时行驶65千米,乙车每小时行驶55千米.一旦两车迎面相遇,则乙车立刻调头;一旦甲车从后面追上一车,则甲车立刻调头,那么两车出发后第11次相遇的地点距离有多少米?
    24.如图,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.
    25.乌龟和兔子从同地点出发,背向而行,在环形跑道上赛跑,经过25分钟相遇。这条跑道长多少米?相遇时兔子比乌龟多跑了多少米?
    26.圆形跑道上等距插着2015面旗子,甲与乙同时同向从某个旗子出发,当甲与乙再次同时回到出发点时,甲跑了23圈,乙跑了13圈.不算起始点旗子位置,则甲正好在旗子位置追上乙多少次?
    27.三个环行跑道如图排列,每个环行跑道周长为210厘米;甲、乙两只爬虫分别从、两地按箭头所示方向出发,甲爬虫绕1、2号环行跑道作“8”字形循环运动,乙爬虫绕3、2号环行跑道作“8”字形循环运动,已知甲、乙两只爬虫的速度分别为每分钟20厘米和每分钟l5厘米,甲、乙两爬虫第二次相遇时,甲爬虫爬了多少厘米?
    28.如图,8时10分,有甲、乙两人以相同的速度分别从相距60米的A,B两地顺时针方向沿长方形ABCD的边走向D点.甲8时20分到D点后,丙、丁两人立即以相同速度从D点出发.丙由D向A走去,8时24分与乙在E点相遇;丁由D向C走去,8时30分在F点被乙追上.问三角形BEF的面积为多少平方米?
    29.周长为400米的圆形跑道上,有相距100米的A,B两点.甲、乙两人分别从A,B两点同时相背而跑,两人相遇后,乙即转身与甲同向而跑,当甲跑到A时,乙恰好跑到B.如果以后甲、乙跑的速度和方向都不变,那么甲追上乙时,甲从出发开始,共跑了多少米?
    30.甲、乙两人沿环形跑道相对运动,从相距200米的两点出发,如果沿小弧运动,甲与乙在10秒后相遇;如果沿大弧运动,经过15秒后相遇.当甲跑完环形跑道一圈时,乙只跑了125米,求环形跑道的周长及甲、乙两人的速度.
    31.两辆电动小汽车在周长为360米的圆形道上不断行驶,甲车每分行驶20米.甲、乙两车同时分别从相距90米的A、B两点相背而行,相遇后乙车立即返回,甲车不改变方向,当乙车到达B点时,甲车过B点后恰好又回到A点.此时甲车立即返回(乙车过B点继续行驶),再过多少分与乙车相遇?

    32.小新和正南在操场上比赛跑步,小新每分钟跑250米,正南每分钟跑210米,一圈跑道长800米,他们同时从起跑点出发,那么小新第三次超过正南需要多少分钟?
    33.甲、乙、丙在湖边散步,三人同时从同一点出发,绕湖行走,甲速度是每小时5.4千米, 乙速度是每小时4.2千米,她们二人同方向行走,丙与她们反方向行走,半个小时后甲和丙相遇,在过5分钟,乙与丙相遇.那么绕湖一周的行程是多少?
    34.甲、乙二人在同一条椭圆形跑道上作特殊训练:他们同时从同一地点出发,沿相反方向跑,每人跑完第一圈到达出发点后立即回头加速跑第二圈,跑第一圈时,乙的速度是甲速度的2/3.甲跑第二圈时速度比第一圈提高了1/3;乙跑第二圈时速度提高了1/5.已知沿跑道看从甲、乙两人第二次相遇点到第一次相遇点的最短路程是190米,那么这条椭圆形跑道长多少米?
    35.甲、乙两名同学在周长为米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑米,乙每秒钟跑米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?
    36.有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行.甲每分钟走40米,乙每分钟走38米,丙每分钟走36米.在途中,甲和乙相遇后3分钟和丙相遇.问:这个花圃的周长是多少米?
    37.甲、乙两人在跑道上练习跑步,已知环形跑道一圈长米,甲每秒钟跑米,乙每秒钟跑米。
    (1)如果甲、乙两人在跑道上相距米处同时反向出发,那么经过多少秒两人首次相遇?
    (2)如果甲在乙前面米处同时同向出发,那么经过多少秒两人首次相遇?
    38.两辆电动小汽车在周长为360米的圆形道上不断行驶,甲车每分行驶20米.甲、乙两车同时分别从相距90米的A,B两点相背而行,相遇后乙车立即返回,甲车不改变方向,当乙车到达B点时,甲车过B点后恰好又回到A点.此时甲车立即返回(乙车过B点继续行驶),再过多少分与乙车相遇?
    39.在环形跑道上,两人都按顺时针方向跑时,每12分钟相遇一次,如果两人速度不变,其中一人改成按逆时针方向跑,每隔4分钟相遇一次,问两人各跑一圈需要几分钟?
    40.小张和小王各以一定速度,在周长为500米的环形跑道上跑步.小王的速度是180米/分.
    (1)小张和小王同时从同一地点出发,反向跑步,75秒后两人第一次相遇,小张的速度是多少米/分?
    (2)小张和小王同时从同一点出发,同一方向跑步,小张跑多少圈后才能第一次追上小王?
    41.环形跑道一圈长为400米,甲、乙两人同时从同一起跑线沿跑道同向而行,甲每分钟走120米,乙每分钟走100米.问(l)甲第一次追上乙时,两人各走了多少米?(2)甲第二次追上乙时,在起跑线前多少米?(3)甲第二次追上乙时,两人各走了多少圈?
    42.如下图,有一个圆,两只小虫分别从直径的两端A与C同时出发,绕圆周相向而行.它们第一次相遇在离A点8厘米处的B点,第二次相遇在离C点处6厘米的D点,这个圆周的长是多少?
    43.如图,沿着边长为90米的正方形,按逆时针方向,甲从A出发,每分钟走65米,乙从B出发,每分钟走72米.当乙第一次追上甲时在正方形的哪一条边上?
    44.小张和小王各以一定速度,在周长为米的环形跑道上跑步.小王的速度是米/分.⑴小张和小王同时从同一地点出发,反向跑步,分钟后两人第一次相遇,小张的速度是多少米/分?⑵小张和小王同时从同一点出发,同一方向跑步,小张跑多少圈后才能第一次追上小王?
    45.小明和小军在学校环形跑道上跑步,两人从同一点出发,反向而行,小明每秒跑4米,小军每秒跑6米,经过60秒两人相遇,跑道的周长是多少米?
    46.运动员小明在环形公路上练长跑,小明离开教练一小时后,教练才想起小明忘带了记时表,立刻骑上自行车送表给小明,已知环形公路全长35千米,小明每小时跑15千米,教练骑自行车的速度是每小时25千米,那么教练送表给小明至少需要多少小时?
    47.一条环形跑道长400米,甲骑自行车每分钟骑450米,乙跑步每分钟250米,两人同时从同地同向出发,经过多少分钟两人相遇?
    48.下图中,外圆周长40厘米,画阴影部分是个“逗号”,两只蚂蚁分别从A,B同时爬行.甲蚂蚁从A出发,沿“逗号”四周顺时针爬行,每秒爬3厘米;乙蚂蚁从B出发,沿外圆圆周顺时针爬行,每秒爬行5厘米.两只蚂蚁第一次相遇时,乙蚂蚁共爬行了多少米?
    49.丁丁和丽丽从圆形街心花园的同一地点出发,同向而行,20分钟后两人再一次相遇。丽丽每分钟走70米,丁丁每分钟走85.7米。这个圆形街心花园的占地面积是多少?
    50.一个圆周长70厘米,甲、乙两只爬虫从同一地点,同时出发同向爬行,甲以每秒4厘米的速度不停的爬行,乙爬行了15厘米后,立即反向爬行,并且速度增加1倍,在离出发点30厘米处与甲相遇,问爬虫乙原来的速度是多少?
    51.如图﹐在长为400公尺的环形跑道上﹐A﹑B两点之间的跑道长100公尺。甲从A点﹑乙从B点同时出发相背而跑。两人相遇后﹐乙即转身与甲同向而跑﹐当甲跑到A时乙恰好跑到B。继续跑若甲追上乙时﹐甲从出发开始算起共跑了多少公尺﹖
    52.一个圆形操场跑道的周长是500米,两个学生同时同地背向而行。黄莺每分钟走66米,麻雀每分钟走59米。经过几分钟才能相遇?
    53.(2005年《小学生数学报》优秀小读者评选活动)有一种机器人玩具装置,配备长、短不同的两条跑道,其中长跑道长400厘米,短跑道长300厘米,且有200厘米的公用跑道(如下图).机器人甲按逆时针方向以每秒6厘米的速度在长跑道上跑动,机器人乙按顺时针方向以每秒4厘米的速度在短跑道上跑动.如果甲、乙两个机器人同时从点出发,那么当两个机器人在跑道上第3次迎面相遇时,机器人甲距离出发点点多少厘米?
    54.两名运动员在湖的周围环形道上练习长跑.甲每分钟跑250米,乙每分钟跑200米,两人同时同地同向出发,经过45分钟甲追上乙;如果两人同时同地反向出发,经过多少分钟两人相遇?
    55.一条环形跑道长400米,小青每分钟跑260米,小兰每分钟跑210米,两人同时出发,经过多少分钟两人相遇
    56.一个圆的周长为1.44米,两只蚂蚁从一条直径的两端同时出发,沿圆周相向爬行.1分钟后它们都调头而行,再过3分钟,它们又调头爬行,依次按照1、3、5、7、…(连续奇数)分钟数调头爬行.这两只蚂蚁每分钟分别爬5.5厘米和3.5厘米,那么经过多长的时间它们初次相遇?
    57.甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行.现在已知甲走一圈的时间是70分钟,如果在出发后45分钟甲、乙二人相遇,那么乙走一圈的时间是多少分钟?
    58.幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第一次追上晶晶时两人各跑了多少米,第2次追上晶晶时两人各跑了多少圈?
    59.甲、乙两人在400米圆形跑道上进行10000米比赛,两人从起点同时同向出发,开始时甲的速度为每秒8米,乙的速度为每秒6米。当甲每次从后面追上乙时,甲的速度就减少1米/秒,而乙的速度增加0.5米/秒,直到乙比甲快。请问:领先者到达终点时,另一人距终点多少米?
    60.绕湖一周是20千米,甲乙二人从湖边某一地点同时出发反向而行,甲以每小时4千米的速度每走1小时后休息5分钟,乙以每小时6千米的速度每走50分钟后休息10分钟,则两人从出发到第一次相遇用了多少分钟?
    参考答案:
    1.3
    【详解】首先我们要注意到:父亲和儿子只能在由沿逆时针方向到这一段跑道上相遇.而且儿子比父亲跑得快,所以相遇时一定是儿子从后面追上父亲.儿子跑一圈所用的时间是(秒),也就是说,儿子每过76秒到达点一次.同样道理,父亲每过50秒到达点一次.在从到逆时针方向的一段跑道上,儿子要跑(秒),父亲要跑(秒).因此,只要在父亲到达点后的2秒之内,儿子也到达点,儿子就能从后面追上父亲.于是,我们需要找76的一个整数倍(这个倍数是父子相遇时儿子跑完的圈数),它比50的一个整数倍大,但至多大2.换句话说,要找76的一个倍数,它除以50的余数在0到2之间.这试一下就可以了:余26,余2,正合我们的要求.因此,在父子第一次相遇时,儿子已跑完2圈,也就是正在跑第3圈.
    2.315秒
    【详解】(4+3)×45
    =7×45
    =315(米)
    315÷(4-3)
    =315÷1
    =315(秒)
    答:315秒后两人再次相遇。
    3.米/秒
    【分析】因为相遇前后甲乙的速度和没有改变,如果相遇后两人合跑一圈用24秒,则相遇前两人合跑一圈也用24秒。以甲为研究对象,甲以原速V跑了24秒的路程与以(V+2)跑了24秒的路程之和等于400米,据此解答。
    【详解】解:设甲的原有速度为V米/秒
    24V+24(V+2)=400
    24V+24V+48=400
    48V=400-48
    48V=352
    V=352÷48
    V=
    答:甲原来的速度是米/秒。
    【分析】发现相遇前后甲乙速度和不变,是解答本题的关键。
    4.60
    【详解】先考虑B与C这两只爬虫,什么时候能到达同一位置.
    开始时,它们相差30厘米,每秒钟B能追上C(5-3)厘米.
    30÷(5-3)=15(秒)
    因此15秒后B与C到达同一位置.以后再要到达同一位置,B要追上C一圈,也就是追上90厘米,需要90÷(5-3)=45(秒)
    B与C到达同一位置,出发后的秒数是15,60,105,150,195,……
    再看看A与B什么时候到达同一位置.
    第一次是出发后,30÷(10-5)=6(秒)
    以后再要到达同一位置是A追上B一圈.需要:90÷(10-5)=18(秒)
    A与B到达同一位置,出发后的秒数是6,24,42,60,78,96,…
    对照两行列出的秒数,就知道出发后60秒3只爬虫到达同一位置.
    答:3只爬虫出发后60秒第一次爬到同一位置.
    5.480
    【详解】注意观察图形,当甲、乙第一次相遇时,甲乙共走完圈的路程,当甲、乙第二次相遇时,甲乙共走完1+=圈的路程.所以从开始到第一、二次相遇所需的时间比为1:3,因而第二次相遇时乙行走的总路程为第一次相遇时行走的总路程的3倍,即100×3=300米.有甲、乙第二次相遇时,共行走(1圈-60)+300,为圈,所以此圆形场地的周长为480米.
    6.660
    【详解】根据题意可知,甲、乙只可能在右侧的半跑道上相遇.
    易知小跑道上左侧的路程为100米,右侧的路程为200米,大跑道上的左、右两侧的路程均是200米.
    我们将甲、乙的行程状况分析清楚.
    当甲第一次到达点时,乙还没有到达点,所以第一次相遇一定在逆时针的某处.
    而当乙第一次到达点时,所需时间为秒,此时甲跑了米,在离点米处.
    乙跑出小跑道到达点需要秒,则甲又跑了米,在点左边米处.
    所以当甲再次到达处时,乙还未到处,那么甲必定能在点右边某处与乙第二次相遇.
    从乙再次到达处开始计算,还需秒,甲、乙第二次相遇,此时甲共跑了秒.
    所以,从开始到甲、乙第二次相遇甲共跑了米.
    7.(1)见详解;(2)6分钟
    【分析】(1)淘气每分钟跑250米,爸爸每分钟跑350米,所以用250÷(250+350)即可求出在相遇时,淘气所行距离占全圈的几分之几。
    (2)环湖跑道一周的长度是3600米,根据路程÷速度和=相遇时间,用3600÷(250+350)即可求出两人相遇所需时间。
    【详解】(1)250÷(250+350)
    =250÷600

    两人相遇点估计如下:
    (2)3600÷(250+350)
    =3600÷600
    =6(分钟)
    答:6分钟后两人相遇。
    【分析】本题考查相遇问题,熟记公式:路程÷速度和=相遇时间是解题的关键。
    8.30分钟
    【分析】由题意可知,相遇时走的路程差是圆形跑道的整数倍,甲、乙、丙三人两两相遇时的路程差都是300米,根据“路程差÷速度差”计算甲乙、甲丙、乙丙分别经过多少分钟相遇,再求出它们的最小公倍数即可。
    【详解】甲乙第二次相遇时经过的时间:300÷(120-100)
    =300÷20
    =15(分钟)
    甲丙第二次相遇时经过的时间:300÷(120-70)
    =300÷50
    =6(分钟)
    乙丙第二次相遇时经过的时间:300÷(100-70)
    =300÷30
    =10(分钟)
    2×3×5=30(分钟)
    答:30分钟之后3人又可以相聚。
    【分析】本题主要考查环形路线中的追及问题和最小公倍数的应用,灵活运用追及问题的计算公式是解答题目的关键。
    9.4圈
    【详解】我们知道,大小圆只有一个公共点(内切),而在圆上最远的两点为直径两端,所以当一只甲虫在A点,另一只在过A的直径另一直径端点B,
    所以在小圆甲虫跑了n圈,在大圆甲虫跑了m+圈;
    于是小圆甲虫跑了30n,大圆甲虫跑了48(m+)=48m+24
    因为速度相同,所以相同时内路程相同,起点相同,
    所以30n=48m+24;
    即5n=8m+4,由不定方程知识,解出有n=4,m=2,
    所以小圆甲虫跑了4圈后,大小甲虫相距最远.
    10.15分钟
    【分析】把两人的相遇时间设为未知数,等量关系式:(小林的速度+小军的速度)×相遇时间=环湖跑道的总路程,据此解答。
    【详解】解:设经过x分钟两人相遇。
    (170+130)x=4500
    300x=4500
    300x÷300=4500÷300
    x=15
    答:15分钟后两人相遇。
    【分析】掌握相遇问题的计算公式是解答题目的关键。
    11.2小时40分
    【分析】根据题意,可以发现,每1小时5分,小王走4千米,休息5分钟,每1小时小张走6×=5(千米),休息10分钟,而湖一周的长度是24千米,很容易估算出两人相遇的时间应该在2个多小时.这样在两轮休息后不用休息两人就可以相遇.因此只要求出两轮休息后到相遇所用的时间,就可以使问题得以解决.
    【详解】解:到第二轮休息时,也就是2小时10分,小王共走了4×2=8(千米),而小张走了5×2+6×=11(千米).这时两人还相距24-(8+11)=5(千米).由于从此时到相遇已经不需要休息,因此,共同走完这5千米两人共需的时间是:5÷(4+6)=0.5(时)=30(分).所以,他们第一次相遇共需2小时10分+30分=2小时40分.
    12.20 30
    【详解】由题意知,甲行 4 分相当于乙行 6 分.(抓住走同一段路程时间或速度的比例关系)
    从第一次相遇到再次相遇,两人共走一周,各行 12 分,而乙行 12 分相当于甲行 8 分,所以甲环行一周需 12+8=20(分),乙需 20÷4×6=30(分).
    13.480
    【详解】注意观察图形,当甲、乙第一次相遇时,甲乙共走完圈的路程,当甲、乙第二次相遇时,甲乙共走完1+=圈的路程.所以从开始到第一、二次相遇所需的时间比为1:3,因而第二次相遇时乙行走的总路程为第一次相遇时行走的总路程的3倍,即100×3=300米.有甲、乙第二次相遇时,共行走(1圈-60)+300,为圈,所以此圆形场地的周长为480米.
    14.22.5秒
    【分析】由于乙与甲同时从同地反向跑,甲用45秒可绕环行跑道跑一圈,15秒相遇时,二人共同跑完一圈.乙15秒所跑的路程就相当于甲45-15=30(秒)所跑的路程,因此,二人的速度关系就比较容易确定了.
    【详解】解:由于同一段路程所用时间越少,速度越快,因此,乙的速度是甲的速度的:(45-15)÷15=2(倍),由此,可以判断出乙跑一圈所用的时间是甲的一半.所以,乙跑完一圈用:45÷2=22.5(秒).
    【分析】合理的转化问题,抓住甲、乙运动中的关系,是这道题目的“突破口”.
    15.1400米
    【详解】先统一两个队员跑步的速度单位:l号队员:6×60=360(米/分钟);2号队员:400×0.8=320(米/分钟)
    追及时间:400÷(360-320)=10(分钟)
    此时1号队员跑了:360×10=3600(米)
    距离终点:5000-3600=1400(米)
    答:l号队员距终点还有1400米.
    16.2
    【详解】我们知道,大小圆只有一个公共点(内切),而在圆上最远的两点为直径两端,所以当一只甲虫在A点,另一只在过A的直径另一直径端点B,
    所以在小圆甲虫跑了n圈,在大圆甲虫跑了m+圈;于是小圆甲虫跑了30n,大圆甲虫跑了48(m+)=48m+24.因为速度相同,所以相同时内路程相同,起点相同,所以30n=48m+24;即5n=8m+4,有不定方城知识,解出有n=4,m=2,所以小甲虫跑了2圈后,大小甲虫相距最远.
    17.64厘米
    【分析】由题意和图示知甲三次走的路程相等:AB+BE=EC+CF=FD+DA+AG,也就是AB+AD﹣32=AB+16=16+AD+16,由此求出答案即可。
    【详解】甲和乙既然是相遇问题,说明时间相同。以甲分析为例,甲三次相遇所走的路程应该是相同的,即:AB+BE=EC+CF=FD+DA+AG,也就是AB+AD﹣32=AB+16=16+AD+16。
    得到AB=64厘米。
    【分析】此题属于多次相遇问题,“甲三次相遇所走的路程应该是相同的”是解题关键。
    18.猫跑8437.5米,狗跑23437.5米,兔跑16537.5米
    【分析】由题意,根据路程、时间之间的关系,可以求得猫与狗的速度之比为9∶25,猫与兔的速度之比为25∶49。设单位时间内猫跑1米,则狗跑米,兔跑米;据此可求狗追上猫一圈需要的时间以及兔追上猫一圈需要的时间;进而求出猫、狗、兔再次相遇的时间,则各自跑的路程可求。
    【详解】由题意可知,猫与狗的速度之比为9∶25,猫与兔的速度之比为25∶49。
    设单位时间内猫跑1米,则狗跑米,兔跑米;
    狗追上猫一圈需300÷(-1)=(单位时间)
    兔追上猫一圈需300÷(-1)=(单位时间)
    猫、狗、兔再次相遇的时间,应既是的整数倍,又是的整数倍。
    与的最小公倍数等于两个分数中,分子的最小公倍数除以分母的最大公约数,即
    [,]==8437.5
    上式表明,经过8437.5个单位时间,猫、狗、兔第1次相遇。此时,猫跑了8437.5米,狗跑了:8437.5×=23437.5(米),
    兔跑了8437.5×=16537.5(米)。
    答:当它们出发后第一次相遇时,猫跑了8437.5米,狗跑了23437.5米,兔跑了16537.5米。
    【分析】首先根据它们的速度比求出狗追上猫一圈、兔追上猫一圈所需的时间单位是完成本题的关键。
    19.924
    【详解】因为甲、乙沿不同的路线,所以并不是谁多跑一圈,就一定有一次超过.超过只可能发生在他们共同经过的路线上,也就是上.
    ⑴甲跑半圈用时秒,乙跑半圈用时秒.也就是说如果某次乙经过点的时间比甲晚不超过秒,他就能在这半圈上追上甲.
    甲跑一圈用的时间为秒,乙跑一圈用的时间为秒,下面看甲、乙经过点的时间序列表(单位:秒)
    可以看出336秒与330秒恰好差6秒,由此可知乙跑完第四圈、在跑第五圈时会第一次与甲相遇.
    ⑵要在点相遇,两人跑的必须都是整数圈,甲跑一圈用秒,乙跑一圈用秒,它们的最小公倍数为.因此秒即分秒后,甲、乙第一次同时回到点.
    20.16分40秒
    【详解】甲看到乙的时候,甲和乙在同一条边上,甲乙两人之间的距离最多有300米长,当甲追上乙一条边(300米)需300÷(90-70)=15(分),此时甲走了90×15÷300=4.5(条)边,甲、乙不在同一条边上,甲看不到乙.甲再走0.5条边就可以看到乙了,即甲走5条边后可看到乙,共需 300×5÷90=16(分钟),即16分40秒.
    21.300
    【详解】根据题意,甲爬虫爬完半圈需要分钟,乙爬虫爬完半圈需要分钟.由于甲第一次爬到1、2之间要分钟,第一次爬到2、3之间要分钟,乙第一次爬到2、3之间要7分钟,所以第一次相遇的地点在2号环形跑道的上半圈处.
    由于甲第一次爬到2、3之间要分钟,第二次爬到1、2之间要分钟,乙第一次爬到1、2之间要14分钟,所以第二次相遇的地点在2号环形跑道的下半圈处.
    当两只爬虫都爬了14分钟时,甲爬虫共爬了米(米),所以甲在距1、2交点35米处,乙在1、2交点上,还需要(分钟)相遇,所以第二次相遇时,两只爬虫爬了分钟.
    所以甲、乙两爬虫第二次相遇时,甲爬虫爬了厘米.
    22.2690米
    【分析】相遇后乙的速度提高20%,跑回B点,即来回路程相同,乙速度变化前后的比为5︰6,所以所花时间的比为6∶5。设甲在相遇时跑了6单位时间,则相遇后到跑回A点用了5单位时间。设甲原来单位时间行程V甲,由题意得:从A点到相遇点路程为40×6=240,所以 V乙=(490-50-240)÷6=(米)。然后再求出两人速度变化后各自的速度;从相遇点开始,甲追上乙时,甲比乙多行一圈,进而求出甲一共跑的路程,解决问题。
    【详解】以速度变化前后的比为1∶(1+20%)
    =5∶6
    所以所花时间比为6∶5
    设甲原来每单位时间的速度V甲,由题意的:
    6V甲+5×V甲×(1+25%)=490
    6V甲+5×V甲×1.25=490
    6V甲+6.25V甲=490
    12.25V甲=490
    V甲=490÷12.25
    V甲=40(米)
    从A点到相遇点路程为:40×6=240(米)
    所以V乙为:(490-50-240)÷6
    =(440-240)÷6
    =200÷6
    =(米)
    两人速度变化后,甲的速度为:40×(1+25%)
    =40×1.25
    =50(米)
    乙的速度为:×(1+20%)
    =×1.2
    =40(米)
    从相遇点开始,甲追上乙时,甲比乙多行了一圈,所以甲一共跑了:
    490÷(50-40)×50+240
    =490÷10×50+240
    =49×50+240
    =2450+240
    =2690(米)
    答:甲一共跑了2690米。
    【分析】本题属于环形跑道问题,有一定难度,应认真分析,求出甲乙二人速度变化前后的速度就解答本题的关键。
    23.3000
    【详解】首先是一个相遇过程,相遇时间:小时,相遇地点距离点:千米.然后乙车调头,成为追及过程,追及时间:小时,乙车在此过程中走的路程:千米,即5圈余3千米,那么这时距离点千米.甲车调头后又成为相遇过程,同样方法可计算出相遇地点距离点千米,而第4次相遇时两车又重新回到了点,并且行驶的方向与开始相同.所以,第8次相遇时两车肯定还是相遇在点,又,所以第11次相遇的地点与第3次相遇的地点是相同的,距离点是3000米.
    24.480
    【详解】注意观察图形,当甲、乙第一次相遇时,甲乙共走完圈的路程,当甲、乙第二次相遇时,甲乙共走完1+=圈的路程.所以从开始到第一、二次相遇所需的时间比为1:3,因而第二次相遇时乙行走的总路程为第一次相遇时行走的总路程的3倍,即100×3=300米.有甲、乙第二次相遇时,共行走(1圈-60)+300,为圈,所以此圆形场地的周长为480米.
    25.1250米;1000米
    【分析】根据题意可知,乌龟和兔子相遇时正好行的路程是环形跑道的长,利用公式:路程=速度×时间,分别计算出它们跑的路程,再相加即可;要求相遇时兔子比乌龟多跑了多少米用兔子跑的路程减去乌龟跑的路程,即可解答。
    【详解】45×25+5×25
    =(45+5)×25
    =50×25
    =1250(米)
    45×25-5×25
    =(45-5)×25
    =40×25
    =1000(米)
    答:这条跑道长1250米,相遇时兔子比乌龟多跑了1000米。
    【分析】此题主要考查了行程问题中速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间,要熟练掌握,解答此题的关键是求出兔子和乌龟的路程是多少。
    26.5次
    【详解】设每两面旗子间距离为1,即跑道周长为.因为,设,,甲要追上乙则需比乙多跑圈,,,即甲追上乙时所花时间,则甲追上乙时,所走路程为;要恰好在旗子位置追上,则所走路程一定为整数,即为偶数,所以(最多多跑10圈);综上所述,甲正好在旗子位置追上乙5次.
    27.300
    【详解】根据题意,甲爬虫爬完半圈需要分钟,乙爬虫爬完半圈需要分钟.由于甲第一次爬到1、2之间要分钟,第一次爬到2、3之间要分钟,乙第一次爬到2、3之间要7分钟,所以第一次相遇的地点在2号环形跑道的上半圈处.
    由于甲第一次爬到2、3之间要分钟,第二次爬到1、2之间要分钟,乙第一次爬到1、2之间要14分钟,所以第二次相遇的地点在2号环形跑道的下半圈处.
    当两只爬虫都爬了14分钟时,甲爬虫共爬了米,(米),所以甲在距1、2交点35米处,乙在1、2交点上,还需要(分钟)相遇,所以第二次相遇时,两只爬虫爬了分钟.
    所以甲、乙两爬虫第二次相遇时,甲爬虫爬了厘米.
    28.2497.5
    【详解】如下图,标出部分时刻甲、乙、丙、丁的位置.
    先分析甲的情况,甲10分钟,行走了AD的路程;再看乙的情况,乙的速度等于甲的速度,
    乙14分钟行走了60+AE的路程,乙20分钟走了60+AD+DF的路程.
    所以乙10分钟走了(60+AD+DF)-(AD)=60+DF的路程.
    有,有
    然后分析丙的情况,丙4分钟,行了走ED的路程,再看丁的情况,
    丁的速度等于丙的速度,丁10分钟行走了DF的距离.
    有,即5ED=2DF.
    联立,解得
    于是,得到如下的位置关系:
    29.1000
    【详解】如下图,记甲乙相遇点为C.当甲跑了AC的路程时,乙跑了BC的路程;而当甲跑了400米时,乙跑了2BC的路程.由乙的速度保持不变,所以甲、乙第一次相向相遇所需的时间是甲再次到达A点所需时间的.即AC=×400=200(米),也就是甲跑了200米时,乙跑了100米,所以甲的速度是乙速度的2倍.那么甲到达A,乙到达B时,甲追上乙时需比乙多跑400-100=300米的路程,所以此后甲还需跑300÷(2-1)×2=600米,加上开始跑的l圈400米.所以甲从出发到甲追上乙时,共跑了600+400=1000米.
    30.环形跑道的周长是500米
    甲的速度是16米/秒,乙的速度是4米/秒
    【详解】甲、乙的速度和:200÷10=20(米/秒)
    15秒两人共跑:20×15=300(米)
    环形跑道的周长:300+200=500(米)
    当甲跑1圈时乙跑了125米,甲、乙的速度比为:500:125=4:1
    那么甲速:=16(米/秒)
    乙速:20-16=4(米/秒)
    答:环形跑道的周长是500米.甲的速度是16米/秒,乙的速度是4米/秒.
    31.3分钟
    【详解】分析各个时间段,甲乙两人的行程. 图中C表示甲、乙第一次相遇地点.因为乙从B到C和从C又返回B时所花的时间相等,而整个过程中甲恰好转一圈回到A,所以甲、乙在C点第一次相遇时,甲刚好走了半圈.
    解:C点距B点:180-90=90(米)
    甲从A到C用了:180÷20=9(分)
    乙的速度是:90÷9=10(米)
    甲、乙第二次相遇还需要90÷(20+10)=3(分钟).
    答:甲车再过3分钟与乙相遇.
    【分析】此题的关键是找出题目中的相等关系,先由乙来回的路程一样得出时间一样,那么甲两段路程的时间也一样,所以路程也一样,然后也可以直接利用路程的比例关系得出甲乙的速度比为2:1,求出乙的速度为10.
    32.60
    【详解】小新第一次超过正南时比正南多跑了一圈,根据,可知小新第一次超过正南需要:(分钟),第三次超过正南时比正南多跑了三圈,需要(分钟).
    33.4.2
    【详解】30分钟乙落后甲(5.4-4.2)÷2=0.6(千米),有题意之乙和丙走这0.6千米用了5分钟,因为乙和丙从出发到相遇共用35分钟,所以绕湖一周的行程为:35÷5×0.6=4.2(千米).
    34.400
    【详解】设甲跑第一圈的速度为3,那么乙跑第一圈的速度为2,甲跑第二圈的速度为4,乙跑第二圈的速度为.如下图:
    第一次相遇地点逆时针方向距出发点的跑道长度.有甲回到出发点时,乙才跑了的跑道长度.在乙接下来跑了跑道的距离时,甲以“4”的速度跑了圈.所以还剩下的跑道长度,甲以4的速度,乙以的速度相对而跑,所以乙跑了圈.也就是第二次相遇点逆时针方向距出发点圈.即第一次相遇点与第二次相遇点相差圈,所以,这条椭圆形跑道的长度为米.
    35.100
    【详解】从开始到两人第十次相遇的这段时间内,甲、乙两人共跑的路程是操场周长的10倍,为米,因为甲的速度为每秒钟跑米,乙的速度为每秒钟跑4米,所以这段时间内甲共行了米,也就是甲最后一次离开出发点继续行了200米,可知甲还需行米才能回到出发点.
    36.8892米
    【详解】第一个相遇:在3分钟的时间里,甲、丙的路程和为(40+36)×3=228(米)第一个追及:这228米是由于在开始到甲、乙相遇的时间里,乙、丙两人的速度差造成的,是逆向的追及过程,可求出甲、乙相遇的时间为228÷ (38-36)=114(分钟)
    第二个相遇:在114分钟里,甲、乙二人一起走完了全程
    所以花圃周长为(40+38)×114=8892(米)
    【分析】这个三人行程的问题由两个相遇、一个追及,题目中所给的条件只有三个人的速度,以及一个“3分钟”的时间.把这样一个抽象的三人行程问题分解为三个简单的问题,使解题思路更加清晰.
    37.(1)28秒;
    (2)196秒
    【分析】(1)相遇时间=(跑道一圈的长度-8米)÷(甲的速度+乙的速度);
    (2)求两人首次相遇就是求甲追上乙的时间,从开始到相遇甲比乙多跑了(400-8)米,追及时间=路程差÷(甲的速度-乙的速度);据此解答。
    【详解】(1)(400-8)÷(6+8)
    =392÷14
    =28(秒)
    答:经过28秒两人首次相遇。
    (2)(400-8)÷(8-6)
    =392÷2
    =196(秒)
    答:经过196秒两人首次相遇。
    【分析】掌握环形中相遇和追及问题的解题方法是解答题目的关键。
    38.3
    【详解】右图中C表示甲、乙第一次相遇地点.因为乙从B到C又返回B时,甲恰好转一圈回到A,所以甲、乙第一次相遇时,甲刚好走了半圈,因此C点距B点180-90=90(米).甲从A到C用了180÷20=9(分),所以乙每分行驶90÷9=10(米).甲、乙第二次相遇,即分别同时从A,B出发相向而行相遇需要90÷(20+10)=3(分).
    39.6分钟 12分钟
    【详解】把这个跑道的长度看做整体“1”,
    则较快的速度为:(+)÷2
    =÷2

    较慢的速度是:
    所以跑完一圈较快的需要时间:1÷=6(分钟)
    较慢的跑完一圈需要时间:1÷=12(分钟)
    答:各跑一圈时,较快的需要6分钟,较慢的需要12分钟。
    40.(1)220米/分(2)5.5圈
    【详解】(1)75秒-1.25分
    两人相遇,也就是合起来跑了一个周长的行程.
    小张的速度是500÷1.25-180=220(米/分)
    (2)在环形的跑道上,小张要追上小王,就是小张比小王多跑一圈(一个周长).
    因此需要的时间是500÷(220-180)=12.5(分)
    220×12.5÷500=5.5(圈)
    答:(1)小张的速度是220米/分;(2)小张跑5.5圈后才能追上小王.
    41.(1)甲第一次追上乙时,甲走了2400米,乙走了2000米.
    (2)甲第二次追上乙时,甲恰好在起跑线上.
    (3)甲第二次追上乙时,甲走了12圈,乙走了10圈.
    【详解】(1)甲第一次追上乙时所用时间:400÷(120-100)=20分钟)
    这时:甲走了120×20=2400(米) 乙走了100×20=2000(米)
    (2)第二次追上乙时所用时间为第1次的2倍,即40分钟,这时甲走了120×40=4800(米)
    4800÷400=12(圈),说明甲此时在起跑线上.
    (3)甲第二次追上乙时,甲走了120×40÷400=12(圈)
    乙走了100×40÷400=10(圈)
    答:甲第一次追上乙时,甲走了2400米,乙走了2000米.甲第二次追上乙时,甲恰好在起跑线上.这时甲走了12圈,乙走了10圈.
    42.36
    【详解】如图所示,第一次相遇,两只小虫共爬行了半个圆周,其中从点出发的小虫爬了8厘米,第二次相遇,两只小虫又爬了一个圆周,所以两只小虫从出发共爬行了1个半圆周,其中从点出发的应爬行(厘米),比半个圆周多6厘米,半个圆周长为(厘米),一个圆周长就是:(厘米)
    43.在AD边上
    【分析】这是一道环行追及问题,这类问题可以先看成“直线”的追及问题,求出乙追上甲所用的时间,再回到环行路上的追及问题,根据乙这段时间所走的路程,推算出应在正方形的哪一条边上.
    【详解】解:先求追上甲时乙所用的时间:90×3÷(72-65)=(分)
    再求这段时间乙所走的路程:72×=(米)
    由于正方形每边长90米,因此:=(4×7+2)×90+
    这样不难看出,乙走的比7圈零两条边还多米,所以,当乙第一次追上甲时,甲和乙应在正方形的AD边上.
    【分析】如何将直线上的追及问题,与环行道路的特点相结合,是这道题得以解决的关键.
    44.300 3
    【详解】⑴两人相遇,也就是合起来跑了一个周长的行程.小张的速度是(米/分).
    ⑵在环形的跑道上,小张要追上小王,就是小张比小王多跑一圈(一个周长),因此需要的时间是:(分).(圈).
    45.600米;600
    【分析】根据数量关系式:路程=速度和×相遇时间,用小明每秒跑的米数加上小军每秒跑的米数,即为两人每秒跑的米数和,再用两人每秒跑的米数和乘相遇的时间,即为跑道的周长。
    【详解】(4+6)×60
    =10×60
    =600(米)
    答:跑道的周长是600米。
    46.0.5小时
    【详解】同向而行时,需要:15×1÷(25-15)
    =15×1÷10
    =1.5(小时)
    相向而行时,需要:(35-15×1)÷(15+25)
    =(35-15)÷40
    =20÷40
    =0.5(小时)
    0.5<1.5
    答:教练送表给小明至少需要0.5小时.
    【分析】解题关键是环形跑道上,教练追上小明有两种走法:一是同向而行;二是相向而行;分别算出所用时间对比即可得解.
    47.2
    【详解】(分钟).
    48.1.5米
    【详解】“逗号”的周长=外圆的周长,
    乙蚂蚁要追上甲蚂蚁要比甲蚂蚁多行:40÷2+40=60(厘米)
    两只蚂蚁第一次相遇需要:60÷(5-3)=30(秒)
    所以乙蚂蚁爬了5×30=150(厘米)=1.5米
    答:两只蚂蚁第一次相遇时,乙蚂蚁共爬行了1.5米.
    49.7850平方米
    【分析】同向而行,20分钟后两人再一次相遇可知:第一次相遇丁丁比丽丽多走了一圈,这一圈刚好是一个圆形,利用路程=速度差×时间求出周长,再通过半径=圆的周长÷π÷2求出半径,最后通过圆的面积=π×半径×半径来求出圆形街心花园的占地面积。
    【详解】(85.7-70)×20
    =15.7×20
    =314(米)
    圆的半径:314÷3.14÷2
    =100÷2
    =50(米)
    圆形街心花园的占地面积:3.14×50×50
    =3.14×2500
    =7850(平方米)
    答:这个圆形街心花园的占地面积是7850平方米。
    【分析】此题考查的追赶问题,熟练掌握速度差×时间=路程以及圆的周长和面积公式是解题的关键。
    50.3.75厘米/秒
    【详解】根据题意,甲共行了70-30=40(厘米),所需的时间是40÷4=10(秒).在10秒内乙按原速爬了15厘米,按2倍的速度爬行了15+30=45(厘米),因此,不难求出乙原有的速度.
    解:因为,甲共行了70-30=40(厘米),所需的时间是40÷4=10(秒).10秒内乙爬行:15+30=45(厘米),假设10秒乙全是按原速爬行,可爬行:15+45÷2=37.5(厘米),所以,乙原有的速度是:37.5÷10=3.75(厘米/秒).
    51.1000公尺
    【分析】根据在相同的时间内,乙从B跑到C,甲可以从A跑到C(相向而行),乙如果按原路返回(从C跑到B),甲又可以同向从C经过B跑到A,可知甲前后跑的两段路程是相等的,则AC=400÷2=200米。又因A、B两点间的距离是100米,所以乙每次跑的路程是200-100=100米,即甲的速度是乙的速度的2倍。现在乙在前300米,甲在后追及,甲跑300×2=600米可以追上乙,原来乙跑了400米,所以甲从出发开始共跑的路程是400+(400-100)×2=1000米。
    【详解】400+[400﹣(400÷2﹣100)]×2
    =400+[400﹣(200﹣100)]
    =400+[400﹣100]×2
    =400+600
    =1000(公尺)
    答:当甲追上乙时,甲共跑了1000公尺。
    【分析】此题属于环形跑道问题,有一定难度,所以应认真分析,根据题意求出AC的距离是完成本题的关键。
    52.4分钟
    【分析】两人相遇时,两人走的路程和恰好等于跑道的周长。黄莺和麻雀每分钟共行125米,那么跑道的周长有几个125米,就需要几分钟。据此利用除法求解即可。
    【详解】500÷(66+59)
    =500÷125
    =4(分钟)
    答:经过4分钟才能相遇。
    【分析】本题考查了相遇问题,相遇时两人的路程和恰好等于跑道的周长。
    53.120
    【详解】第一次在点相遇,这时甲、乙共跑了400厘米(见左下图);
    第二次在点相遇,这时甲、乙又共跑了700厘米(见右上图);
    同理,第三次相遇时,甲、乙又共跑了700厘米.
    那么到第三次相遇时两者共跑了厘米,共用时间(秒),甲跑了(厘米),距点(厘米).
    54.5
    【详解】在封闭的环形道上同向运动属追及问题,反向运动属相遇问题.同地出发,其实追及路程或相隔距离就是环形道一周的长.这道题的解题关键就是先求出环形道一周的长度.环形道一周的长度可根据两人同向出发,45分钟后甲追上乙,由追及问题,两人速度差为:(米/分),所以路程差为:(米),即环形道一圈的长度为2250米.所以反向出发的相遇时间为:(分钟).
    55.8分钟
    【详解】小青每分钟比小兰多跑50米一圈是400米400/50=8所以跑8分钟
    56.64分
    【详解】解:因为圆的半周长是:1.44÷2=0.72(米)=72(厘米).如果不考虑往返的情况,两只蚂蚁所需的相遇时间是:72÷(5.5+3.5)=8(分).然后再考虑往返的情况,如下表:
    不难看出,第15分钟后,两只蚂蚁向下半圆爬行刚好都需要8分钟.
    根据表格分析,它们初次相遇的时间是:1+3+5+7+9+11+13+15=64(分).
    【分析】利用列表法进行分析,也是解决行程问题常用的手段.
    57.126
    【详解】甲行走45分钟,再行走70-45=25分钟即可走完一圈.而甲行走45分钟,乙行走45分钟也能走完一圈.所以甲行走25分钟的路程相当于乙行走45分钟的路程.甲行走一圈需70分钟,所以乙需70÷25×45=126分钟.即乙走一圈的时间是126分钟.
    58.600 400,6 4
    【详解】这是一道封闭路线上的追及问题,冬冬与晶晶两人同时同地起跑,方向一致.因此,当冬冬第一次追上晶晶时,他比晶晶多跑的路程恰是环形跑道的一个周长(200米),又知道了冬冬和晶晶的速度,于是,根据追及问题的基本关系就可求出追及时间以及他们各自所走的路程.
    ①冬冬第一次追上晶晶所需要的时间:(秒)
    ②冬冬第一次追上晶晶时他所跑的路程应为:(米)
    ③晶晶第一次被追上时所跑的路程:(米)
    ④冬冬第二次追上晶晶时所跑的圈数:(圈)
    ⑤晶晶第2次被追上时所跑的圈数:(圈)
    59.36米。
    【分析】要求领先者到达终点时,另一人距终点多少米,应先求得另一人已经跑了多少米,再求领先者到达终点时的时间和另一人此时的速度,要求领先者到到终点的时间,应求出他距终点的路程和此时的速度,再依据数量关系即可列式计算。
    【详解】甲追乙1圈时,甲跑了
    8×[400÷(8﹣6)]
    =8×200
    =1600(米),
    此时甲、乙的速度分别变为6米/秒和5.5米/秒。甲追上乙2圈时,甲跑了
    1600+6×[400÷(6﹣5.5)]
    =1600+6×800
    =6400(米),
    此时甲、乙的速度分别变为4米/秒和5米/秒。乙第一次追上甲时,甲跑了
    6400+4×[400÷(5﹣4)]
    =6400+1600
    =8000(米),
    乙跑了8000﹣400=7600(米)。此时,甲、乙的速度分别变为4.5米/秒和5.5米/秒。乙跑到终点还需
    (10000﹣7600)÷5.5
    =2400÷5.5
    =(秒),
    乙到达终点时,甲距终点
    (10000﹣8000)﹣4.5×
    =2000﹣1963
    =36(米)。
    答:领先者到达终点时,另一人距终点36米。
    【分析】此题主要考查环形跑道的追及问题,关键是弄明白随着速度的变化,快到终点时乙的速度要快一些。
    60.136分钟
    【详解】两人相遇时间要超过2小时,出发130分钟后,甲乙都休息完2次,甲已经行了(千米),乙已经行了(千米).相遇还需要(小时),即6分钟.所以两人从出发到第一次相遇用(分钟).

    0
    66
    132
    198
    264
    330

    0
    84
    168
    252
    336
    经过时间(分)
    1
    3
    5
    7
    9
    11
    13
    15
    16
    向上半圆爬行的时间
    1

    2

    2

    2

    1
    向下半圆爬行的时间

    2

    2

    2

    2

    相关试卷

    (典例创新题)盈亏问题(奥数培优)-2023-2024学年六年级下册小升初数学思维拓展提升卷(通用版):

    这是一份(典例创新题)盈亏问题(奥数培优)-2023-2024学年六年级下册小升初数学思维拓展提升卷(通用版),共34页。试卷主要包含了六年级学生出去划船等内容,欢迎下载使用。

    (典例创新题)浓度问题(奥数培优)-2023-2024学年六年级下册小升初数学思维拓展提升卷(通用版):

    这是一份(典例创新题)浓度问题(奥数培优)-2023-2024学年六年级下册小升初数学思维拓展提升卷(通用版),共35页。

    (典例创新题)时钟问题(奥数培优)-2023-2024学年六年级下册小升初数学思维拓展提升卷(通用版):

    这是一份(典例创新题)时钟问题(奥数培优)-2023-2024学年六年级下册小升初数学思维拓展提升卷(通用版),共29页。试卷主要包含了小明在7点与8点之间解了一道题等内容,欢迎下载使用。

    数学口算宝
    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map