所属成套资源:2024年高考押题预测卷
2024年高考押题预测卷03【全国卷】数学文科
展开
这是一份2024年高考押题预测卷03【全国卷】数学文科,共4页。
数 学(文科)
(考试时间:120分钟 试卷满分:150分)
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.
3.考试结束后,将本试卷和答题卡一并交回.
第一部分(选择题 共60分)
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
已知集合,,则满足的实数a的个数为( )
已知复数的共轭复数为,则( )
在中,则( )
已知是偶函数,则( )
设是两个不同的平面,是两条直线,且.则“”是“”的( )
随着国潮的兴起,消费者对汉服的接受度日渐提高,数据显示,目前中国大众穿汉服的场景主要有汉服活动、艺术拍摄、传统节日、旅游观光、舞台表演、婚庆典礼6类,某自媒体博主准备从这6类场景中选2类拍摄中国大众穿汉服的照片,则汉服活动、旅游观光这2类场景至少有1类场景被选中的概率为( )
已知一个三棱锥的三视图如图,正视图为边长为3的正方形,侧视图和俯视图均为等腰直角三角形,则此几何体的外接球的表面积为( )
已知点,点Q在圆上运动,若,则的最大值为( )
已知函数,若直线为函数图象的一条对称轴,为函数图象的一个对称中心,且在上单调递减,则的最大值为( )
我国南宋时期杰出的数学家秦九韶在《数书九章》中提出了“三斜求积术”,其内容为:“以小斜幂,并大斜幂,减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约之,为实;一为从隅,开平方得积.”把以上文字写成公式,即(其中S为面积,a,b,c为的三个内角A,B,C所对的边).若,且,则利用“三斜求积”公式可得的面积( )
已知双曲线:的右焦点为F,过点F作垂直于x轴的直线,M,N分别是与双曲线C及其渐近线在第一象限内的交点.若M是线段的中点,则C的渐近线方程为( )
已知,则的大小关系是( )
第二部分(非选择题 共90分)
三、填空题:本题共4小题,每小题5分,共20分.
已知实数满足,则的最小值为______.
设,向量,,若,则__________.
已知圆锥的轴截面为正三角形,球与圆锥的底面和侧面都相切.设圆锥的体积、表面积分别为,球的体积、表面积分别为,则__________.
抛物线的焦点F,点A,B在抛物线上,且,弦AB的中点M在准线上的射影为N,则的最大值为__________.
三、解答题:共70分,解答应写出必要的文字说明、证明过程及验算步骤.第17~21题为必考题,每个试题考生都必须作答,第22、23题为选做题,考生根据要求作答.
(一)必考题:共60分.
第19届亚运会将于2023年9月23日在我国杭州举行,这是继北京亚运会后,我国第二次举办这一亚洲最大的体育盛会.为迎接这一体育盛会,浙江某大学举办了一次主题为“喜迎杭州亚运,讲好浙江故事”的知识竞赛,并从所有参赛大学生中随机抽取了100人,统计他们的竞赛成绩(满分100分,每名参赛大学生至少得60分),并将成绩分成4组:,,,(单位:分),得到如下的频率分布直方图.
(1)试用样本估计总体的思想,估计这次竞赛中参赛大学生成绩的平均数及中位数;(同一组数据用该组数据的区间中点值作代表)
(2)现将竞赛成绩不低于90分的学生称为“亚运达人”,成绩低于90分的学生称为“非亚运达人”.这100名参赛大学生的情况统计如下.
判断是否有99.5%的把握认为能否获得“亚运达人”称号与性别有关.
附:(其中).
已知数列是公差不为零的等差数列,其前项和为,若成等比数列,且.
(1)求数列的通项公式;
(2)记,求证:.
如图,在四棱锥中,平面平面,底面为等腰梯形,,且.
(1)证明:平面平面;
(2)若点到平面的距离为,求四棱锥的体积.
已知,曲线在处的切线方程为.
(1)求;
(2)证明.
已知双曲线的右焦点,离心率为,过F的直线交于点两点,过与垂直的直线交于两点.
(1)当直线的倾斜角为时,求由四点围成的四边形的面积;
(2)直线分别交于点,若为的中点,证明:为的中点.
(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做.则按所做的第一题记分.
在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)求的普通方程和的直角坐标方程;
(2)设直线与轴相交于点,动点在上,点满足,点的轨迹为,试判断曲线与曲线是否有公共点.若有公共点,求出其直角坐标;若没有公共点,请说明理由.
已知,,均为正数,且.
(1)是否存在,,,使得,说明理由;
(2)证明:.
A.1
B.2
C.3
D.4
A.
B.
C.4
D.2
A.
B.
C.
D.
A.0
B.1
C.
D.
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
A.
B.
C.
D.
A.
B.
C.
D.
A.
B.
C.
D.
A.
B.
C.
D.
A.
B.
C.
D.
A.
B.
C.
D.
A.
B.
C.
D.
亚运达人
非亚运达人
总计
男生
15
30
45
女生
5
50
55
0.10
0.05
0.025
0.010
0.005
0.001
2.706
3.841
5.024
6.635
7.879
10.828
相关试卷
这是一份2024年高考押题预测卷—数学(全国卷文科03)(考试版),共5页。
这是一份2024年高考押题预测卷—数学(全国卷文科03)(解析版),共12页。
这是一份2024年高考押题预测卷—数学(全国卷文科02)(解析版),共18页。