2024年中考押题预测卷02(成都卷)-数学(考试版)A3
展开数 学
(考试时间:120分钟 试卷满分:150分)
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
A卷(共100分)
第Ⅰ卷(选择题,共32分)
一、选择题(本大题共8个小题,每小题4分,共32分。每小题均有四个选项,其中只有一项符合题目要求)
1.的相反数是( )
A.2024B.C.D.
2.地月距离是指地球与月球之间的距离,有平均距离、月球与地球近地点的距离、月球与地球远地点的距离三种.其中,地月平均距离约为,用科学记数法表示为( )
A.B.C.D.
3.下列运算正确的是( )
A. B. C. D.
4.某校为了了解全校965名学生的课外作业负担情况,随机对全校100名学生进行了问卷调查,下面说法正确的是( )
A.总体是全校965名学生B.个体是每名学生的课外作业负担情况
C.样本是100D.样本容量是100名
5.如图,在四边形中,对角线与相交于点O,下列条件不能判定四边形是平行四边形的是( )
A. B.
C. D.
6.四张看上去无差别的卡片上分别印有正方形、正三角形、正八边形和圆,现将印有图形的一面朝下,混合均匀后从中随机抽取两张,则抽到的卡片上印有的图形都是中心对称图形的概率为( )
A.B.C.D.
7.幻方的历史悠久,传说最早出现在夏禹时代的“洛书(图1)”,把洛书用今天的数学符号翻译出来,就是一个三阶幻方.如图2三阶幻方的每行、每列、每条对角线上的三个数之和都相等.如图3,这是另一个三阶幻方,则的值为( )
A.3B.C.D.6
8.如图,二次函数的图象与x轴的交点的横坐标分别为,3,则下列结论:①;②;③;④对于任意x均有.正确的有( )个.
A.1 B.2 C.3 D.4
第Ⅱ卷(非选择题,共68分)
二、填空题(本大题共5个小题,每小题4分,共20分)
9.分解因式 .
10.已知反比例函数的图象上两点,.若,则m的取值范围是 .
11.两个大小不同的等腰直角三角板按图1所示摆放,将两个三角板抽象成如图2所示的和,其中,点、、依次在同一条直线上,连结.若,,则的面积是 .
12.已知线段 轴,若点M坐标为,则N点坐标为 .
13.如图,线段,分别以,为圆心,大于的长为半径画弧交于点,,作直线,连接,,,.若,则四边形的面积为 .
三、解答题(本大题共5个小题,共48分)
14.(本小题满分12分,每题6分)
(1)计算:;
(2)先化简,再求值:,其中x是方程的根.
15.(本小题满分8分)“安全责任重于泰山”,为切实做好学校消防安全、反恐防暴等安全工作,提高学校的应急处置能力,打造平安校园,培养让学生终身受益的灾害应急能力,某校开展了一次消防、反恐防暴培训及演练活动.为了解此次活动效果,随机抽取了七年级、八年级、九年级学生若干名(抽取的各年级学生人数相同)进行网上问卷测试,并对得分情况进行整理和分析(得分用整数x表示,单位:分),且分为A,B,C三个等级,分别是:优秀为A等级:;合格为B等级:;不合格为C等级:.分别绘制成如下统计图表,其中七年级学生测试成绩的众数出现在A组.A组测试成绩情况分别为:85,85,87,92,95,95,95,95,97,98,99,100;八年级学生测试成绩中A组共有a个人.
七年级、八年级、九年级三组样本数据的平均数、中位数、众数和方差如表所示:
根据以上信息,解答下列问题:
(1)填空: , , ;
(2)根据以上数据,估计该学校哪个年级的测试成绩最好,并说明理由;
(3)若该校七年级、八年级、九年级各有200人,请估计该校初中学生中成绩为优秀的学生共有多少人?
16.(本小题满分8分)某兴趣小组研制的智能操作机器人,如图1,水平操作台为,高为,连杆长度为,手臂的长度为,,是转动点,且与始终在同一平面内.
(1)转动连杆,手臂,使,,如图2,求手臂端点离操作台的高度的长(精确到,参考数据:,).
(2)物品在操作台上,距离底座端的点处,转动连杆,手臂端点能否碰到点?请说明理由.
17.(本小题满分10分)如图所示,的半径为5,点A是上一点,直线l过点A;P是上的一个动点(不与点A重合),过P作于点B,交于点E,直径的延长线交直线l于点F,点A是的中点.
(1)求证:直线l是的切线;
(2)若,求的长.
18.(本小题满分10分)如图,一次函数与反比例函数的图像相交于点,,
(1)求一次函数及反比例函数的解析式;
(2)请直接写出关于x的不等式的解集;
(3)点P是x轴负半轴上一动点,连接、,当面积为12时,求点P的坐标.
B卷(共50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19.若是方程的根,则代数式的值是 .
20.如图,在中,,,,为的角平分线.为边上一动点,为线段上一动点,连接、、,当取得最小值时,的面积为 .
21.如图,正方形的边长是,是边的中点.将该正方形沿折叠,点落在点处.分别与,,相切,切点分别为,,,则的半径为 .
22.如图,矩形中,,点E是的中点,点F是边上一动点.将沿着翻折,使得点B落在点处,若点P是矩形内一动点,连接,则的最小值为 .
23.若一个四位正整数的各个数位上的数字均不为0,百位数字的2倍等于千位数字与十位数字的和,个位数字比十位数字大1,则称这样的四位正整数为“吉祥数”.比如2345就是一个“吉祥数”,那么最小的“吉祥数”是 .若A是一个“吉祥数”,由A的千位数字和百位数字依次组成的两位数与A的十位数字和个位数字依次组成的两位数的和记为,比A的各个数位上的数字之和大2,若为整数,则满足条件中的A的最大值为 .
二、解答题(本大题共3个小题,共30分)
24.(本小题满分8分)利群商场准备购进甲、乙两种服装出售,甲种服装每件售价130元,乙种服装每件售价100元,每件甲种服装的进价比乙种服装的进价贵20元,购进3件甲种服装的费用和购进4件乙种服装的费用相等,现计划购进两种服装共100件,其中甲种服装不少于65件.
(1)甲、乙两种服装每件的进价分别是多少元?
(2)若购进这100件服装的费用不得超过7500元.
①求甲种服装最多购进多少件;
②利群商场对甲种服装每件降价元,乙种服装价格不变,如果这100件服装都可售完,那么如何进货才能获得最大利润?
25.(本小题满分10分)如图,在平面直角坐标系中,抛物线与轴交于,两点,与轴交于点,且.
(1)试求抛物线的解析式;
(2)直线与轴交于点,与抛物线在第一象限交于点,与直线交于点,记,试求取最大值时点的坐标;
(3)在(2)的条件下,取最大值时,点是轴上的一个动点,点是坐标平面内的一点,是否存在这样的点、,使得以、、、四点组成的四边形是菱形若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.
26.(本小题满分12分)综合与实践
【问题情境】在数学综合实践课上,“希望小组”的同学们以三角形为背景,探究图形
变化过程中的几何问题.如图,在中,,,点D为平面内一点(点A,B,D三点不共线),为的中线.
【初步尝试】(1)如图1,小林同学发现:延长至点M,使得,连接.始终存在以下两个结论,请你在①,②中挑选一个进行证明:
①;②;
【类比探究】(2)如图2,将绕点A顺时针旋转得到,连接.小斌同学沿着小林同学的思考进一步探究后发现:,请你帮他证明:
【拓展延伸】(3)如图3,在(2)的条件下,王老师提出新的探究方向:点D在以点A为圆心,为半径的圆上运动(),直线与直线相交于点G,连接,在点D的运动过程中存在最大值.若,请直接写出的最大值.
年级
平均数
中位数
众数
方差
七年级
85
c
d
163
八年级
88
91
96
95.1
九年级
89
91.5
100
77.7
2023年中考押题预测卷02(福建卷)-数学(考试版)A3: 这是一份2023年中考押题预测卷02(福建卷)-数学(考试版)A3,共5页。
2023年中考押题预测卷02(天津卷)-数学(考试版)A3: 这是一份2023年中考押题预测卷02(天津卷)-数学(考试版)A3,共4页。试卷主要包含了本卷共12题,共36分,995×1011B.49,4995×1011D.4等内容,欢迎下载使用。
2023年中考押题预测卷02(苏州卷)-数学(考试版)A3: 这是一份2023年中考押题预测卷02(苏州卷)-数学(考试版)A3,共5页。